Berikut ini adalah kumpulan soal mengenai 
Fungsi. Jika ingin bertanya soal, silahkan gabung ke grup 
Telegram, 
Signal, 
Discord, atau 
WhatsApp.
  
     
     
    
        No. 
        Diberikan fungsi 
f memenuhi persamaan 
2f(x+2)+f(-x)=x-3 untuk setiap bilangan bulat 
x. Nilai 
f(2) adalah ....
        
        
        
        
        
        
                  Untuk x=0,
            \begin{aligned}
            2f(0+2)+f(-0)&=0-3\\
            2f(2)+f(0)&=-3\\
            4f(2)+2f(0)&=-6
            \end{aligned}
            
            Untuk x=-2,
            \begin{aligned}
            2f(-2+2)+f(-(-2))&=-2-3\\
            2f(0)+f(2)&=-5\\
            f(2)+2f(0)&=-5
            \end{aligned}
            
    
          \begin{aligned}
            4f(2)+2f(0)&=-6\\
            f(2)+2f(0)&=-5\qquad-\\\hline\\[-12pt]
            3f(2)&=-1\\
            f(2)&=\boxed{\boxed{-\dfrac13}}
            \end{aligned}
         
         
         
        No. 
        f\left(x^2+3ax+1\right)=2x-1 dan 
f(5)=3. Hitung nilai 
a
        
        
        
        
                  \begin{aligned}
            2x-1&=3\\
            2x&=4\\
            x&=2
            \end{aligned}
            
    
          \begin{aligned}
            x^2+3ax+1&=5\\
            2^2+3a(2)+1&=5\\
            4+6a+1&=5\\
            6a+5&=5\\
            6a&=0\\
            a&=0
            \end{aligned}
         
         
         
        No. 
        Jika 
f(x)=3h(x)+4; 
g(x)=\dfrac{\sqrt{f(x)}}9; dan 
h(x)=3x^2 + 2x-1, maka nilai dari 
2f(3)\cdot g(2)-f^2(3)-g^2(2) adalah ....
        
        
        
        
        
 
 
 
        
        
        
        
 
 
         
        
          
        
        
        
        \begin{aligned}
        2f(3)\cdot g(2)-f^2(3)-g^2(2)&=-\left(f(3)-g(2)\right)^2\\
        &=-\left(3h(3)+4-\dfrac{\sqrt{f(2)}}9\right)^2\\
        &=-\left(3\left(3(3)^2+2(3)-1\right)+4-\dfrac{\sqrt{3h(2)+4}}9\right)^2\\
        &=-\left(3\left(27+6-1\right)+4-\dfrac{\sqrt{3\left(3(2)^2+2(2)-1\right)+4}}9\right)^2\\
        &=-\left(3\left(32\right)+4-\dfrac{\sqrt{3\left(12+4-1\right)+4}}9\right)^2\\
        &=-\left(96+4-\dfrac{\sqrt{3\left(15\right)+4}}9\right)^2\\
        &=-\left(100-\dfrac{\sqrt{45+4}}9\right)^2\\
        &=-\left(100-\dfrac{\sqrt{49}}9\right)^2\\
        &=-\left(100-\dfrac79\right)^2\\
        &=-\left(\dfrac{893}9\right)^2\\
        &=-\dfrac{797449}{81}
        \end{aligned}
        
         
         
          No. 
        Jika 
f(x)=a^x, maka untuk setiap 
x dan 
y berlaku
        
        
        
        - f(x)f(y)=f(xy)
- f(x)f(y)=f(x+y)
 
- f(x)f(y)=f(x)+f(y)
 
 
        
        
        - f(x)+f(y)=f(xy)
- f(x)+f(y)=f(x+y)
 
 
         
          
        
        
        
        
        \begin{aligned}
        f(x)f(y)&=a^xa^y\\
        &=a^{x+y}\\
        &=f(x+y)
        \end{aligned}
        
         
         
          No. 
        Bila 
f(x) memenuhi 
2f(x)+f(1-x)=x^2 untuk semua nilai real 
x, maka 
f(x) sama dengan
        
        
        
        
        
 
 
 
        
        
        
        
 
 
         
        
        
        
        
        
                  \begin{aligned}
            2f(1-x)+f(1-(1-x))&=(1-x)^2\\
            2f(1-x)+f(1-1+x)&=1-2x+x^2\\
            2f(1-x)+f(x)&=x^2-2x+1\\
            f(x)+2f(1-x)&=x^2-2x+1
            \end{aligned}
            
            \begin{aligned}
            2f(x)+f(1-x)&=x^2\qquad&\color{red}{\times 2}\\
            f(x)+2f(1-x)&=x^2-2x+1
            \end{aligned}
            
    
          \begin{aligned}
            4f(x)+2f(1-x)&=2x^2\\
            f(x)+2f(1-x)&=x^2-2x+1&\color{red}{-}\\\hline\\[-12pt]
            3f(x)&=x^2+2x-1\\
            f(x)&=\dfrac13x^2+\dfrac23x-\dfrac13
            \end{aligned}
         
         
         
        No. 
        Jika 
(f\circ g)(x)=\dfrac{6x+3}{2x-5} dan 
g(x)=4x-11, maka hasil dari 
\displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx adalah
        
        
        
        - 72\ln2-3
- 36\ln 3-2
 
- 36\ln 2-6
 
 
        
         
        
        
        
        
                  \begin{aligned}
            (f\circ g)(x)&=\dfrac{6x+3}{2x-5}\\[10pt]
            f(g(x))&=\dfrac{12x+6}{4x-10}\\[10pt]
            f(4x-11)&=\dfrac{3(4x-11)+39}{4x-11+1}\\[10pt]
            f(x)&=\dfrac{3x+39}{x+1}\\[10pt]
            f^{-1}(x)&=\dfrac{-x+39}{x-3}\\[10pt]
            f^{-1}(x-1)&=\dfrac{-(x-1)+39}{x-1-3}\\[10pt]
            &=\dfrac{-x+1+39}{x-4}\\[10pt]
            &=\dfrac{-x+40}{x-4}
            \end{aligned}
            
    
          \begin{aligned}
            \displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+40}{x-4}}{4(3)-11}\ dx\\
            &=\displaystyle\intop_5^8\dfrac{\dfrac{-x+4+36}{x-4}}{12-11}\ dx\\
            &=\displaystyle\intop_5^8\dfrac{-1+\dfrac{36}{x-4}}1\ dx\\
            &=\displaystyle\intop_5^8\left(-1+\dfrac{36}{x-4}\right)\ dx\\
            &=\left[-x+36\ln|x-4|\right]_5^8\\
            &=\left[-8+36\ln|8-4|\right]-\left[-5+36\ln|5-4|\right]\\
            &=\left[-8+36\ln4\right]-\left[-5+36\ln1\right]\\
            &=\left[-8+36\ln2^2\right]-\left[-5-42(0)\right]\\
            &=\left[-8+72\ln2\right]-\left[-5\right]\\
            &=-8+72\ln2+5\\
            &=\boxed{\boxed{72\ln2-3}}
            \end{aligned}
         
         
         
        No. 
          Jika 
f\left(\dfrac2{\sqrt{2x-1}}\right)=x dengan 
x\geq\dfrac12, maka 
f(1)=
        
        
        
        
        
        
        \begin{aligned}
        \dfrac2{\sqrt{2x-1}}&=1\\
        \sqrt{2x-1}&=2\\
        2x-1&=4\\
        2x&=5\\
        x&=\dfrac52
        \end{aligned}
        
        f(1)=\boxed{\boxed{\dfrac52}}
        
         
         
          No. 
          Fungsi 
f terdefinisi pada bilangan real kecuali 
2 sehingga 
{f\left(\dfrac{2x}{x-5}\right)=2x-1}, 
{x\neq5}. Nilai dari 
{f(3) + f(1)} adalah ....
        
          
        
        
        
        
        
        
        CARA 1
        Misal \left(\dfrac{2x}{x-5}\right)=t
        \begin{aligned}
        2x&=tx-5t\\
        2x-tx&=-5t\\
        tx-2x&=5t\\
        (t-2)x&=5t\\
        x&=\dfrac{5t}{t-2}
        \end{aligned}
        
        \begin{aligned}
        f\left(\dfrac{2x}{x-5}\right)&=2x-1\\
        f(t)&=2\left(\dfrac{5t}{t-2}\right)-1\\
        &=\dfrac{10t}{t-2}-1\\
        &=\dfrac{10t-(t-2)}{t-2}\\
        &=\dfrac{10t-t+2}{t-2}\\
        &=\dfrac{9t+2}{t-2}
        \end{aligned}
        
        \begin{aligned}
        f(3)+f(1)&=\dfrac{9(3)+2}{3-2}+\dfrac{9(1)+2}{1-2}\\
        &=\dfrac{29}1+\dfrac{11}{-1}\\
        &=29-11\\
        &=\boxed{\boxed{18}}
        \end{aligned}
        
        
        CARA 2
        \begin{aligned}
        \dfrac{2x}{x-5}&=3\\
        2x&=3x-15\\
        -x&=-15\\
        x&=15
        \end{aligned}
        
        \begin{aligned}
        f(3)&=2(15)-1\\
        &=29
        \end{aligned}
        
        \begin{aligned}
        \dfrac{2x}{x-5}&=1\\
        2x&=x-5\\
        x&=-5
        \end{aligned}
        
        \begin{aligned}
        f(1)&=2(-5)-1\\
        &=-11
        \end{aligned}
        
        \begin{aligned}
        f(3)+f(1)&=29+(-11)\\
        &=\boxed{\boxed{18}}
        \end{aligned}
         
         
        
         
         
        No. 
          Diberikan fungsi 
f memenuhi persamaan 
{2f(-x)+f(x+3)=x+5} untuk setiap bilangan real 
x.  Nilai 
3f(1) adalah
        
        
        
        
        
        
        
        
        Untuk x=-1,
        \begin{aligned}
        2f(-(-1))+f(-1+3)&=-1+5\\
        2f(1)+f(2)&=4\\
        4f(1)+2f(2)&=8
        \end{aligned}
        
        Untuk x=-2,
        \begin{aligned}
        2f(-(-2))+f(-2+3)&=-2+5\\
        2f(2)+f(1)&=3\\
        f(1)+2f(2)&=3
        \end{aligned}
        
        \begin{aligned}
        4f(1)+2f(2)&=8\\
        f(1)+2f(2)&=3\qquad-\\\hline\\[-12pt]
        3f(1)&=5
        \end{aligned}
         
         
        
         
         
        No. 
          Jika fungsi 
{f\left(x^2 + 3x + 5\right) = {^3\log}\left(20x^2 + 3x + 4\right)}, dengan 
{x\geq0}, maka nilai 
f(9) =
        
        
        
        
        
        
        
        
        \begin{aligned}
        x^2 + 3x + 5&=9\\
        x^2+3x-4&=0\\
        (x+4)(x-1)&=0
        \end{aligned}
        x=-4 (TM) atau x=\boxed{1}
        
        \begin{aligned}
        f(9)&={^3\log}\left(20(1)^2 + 3(1) + 4\right)\\
        &={^3\log}\left(27\right)\\
        &=\boxed{\boxed{3}}
        \end{aligned}
         
         
        
         
         
         | 
INVERS FUNGSI | 
FUNGSI KUADRAT | 
FUNGSI TRIGONOMETRI | 
FUNGSI FLOOR
        
 
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas