Exercise Zone : Limit Trigonometri

Berikut ini adalah kumpulan soal mengenai Limit Trigonometri tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

Tingkat Kesulitan:

  • 1
  • 2

No. 1

{\displaystyle\lim_{x\to0}\dfrac{\cos3x-\cos x}{\tan^22x}=} ....
  1. {1}
  2. {-\dfrac12}
  3. {-1}
  1. {\dfrac12}
  2. {3}
limx0cos3xcosxtan22x=limx02sin(3x+x2)sin(3xx2)tan22x=limx02sin2xsinxtan22x=2limx0sin2xtan2xsinxtan2x=22212=1


No. 2

\displaystyle\lim_{x\to0}\dfrac{1-\cos x}{\sin x}= ....
  1. 0
  2. \dfrac14
  3. \dfrac12
  1. 1
  2. 2
limx01cosxsinx=limx01cosxsinx1+cosx1+cosx=limx01cos2xsinx(1+cosx)=limx0sin2xsinx(1+cosx)=limx0sinx1+cosx=sin01+cos0=01+1=0

No. 3

Nilai \displaystyle\lim_{x\to0}\dfrac{2\sin^2\dfrac12x}{x\tan x}= ....
  1. -2
  2. -1
  3. -\dfrac12
  1. >\dfrac12
  2. 1
limx02sin212xxtanx=2(12)2(1)(1)=2(14)1=12

No. 4

>Nilai dari \displaystyle\lim_{x\to-2}\dfrac{\left(x^2-4\right)\tan(x+2)}{\sin^2(x+2)}= ....
  1. -4
  2. -3
  3. 0
  1. 4
  2. \infty
limx2(x24)tan(x+2)sin2(x+2)=limx2(x2)(x+2)tan(x+2)sin2(x+2)=22=4

No. 5

\displaystyle\lim_{x\to0}\dfrac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^3}= ....
limx01+tanx1+sinxx3=limx01+tanx1+sinxx31+tanx+1+sinx1+tanx+1+sinx=limx0(1+tanx)(1+sinx)x3(1+tanx+1+sinx)=limx01+tanx1sinxx3(1+tanx+1+sinx)=limx0sinxcosxsinxx3(1+tanx+1+sinx)=limx0sinxcosx(1cosx)x3(1+tanx+1+sinx)1+cosx1+cosx=limx0sinx(1cos2x)x3cosx(1+tanx+1+sinx)(1+cosx)=limx0sinx(sin2x)x3cosx(1+tanx+1+sinx)(1+cosx)=limx0sin3xx3cosx(1+tanx+1+sinx)(1+cosx)=limx0sin3xx3limx01cosx(1+tanx+1+sinx)(1+cosx)=131cos0(1+tan0+1+sin0)(1+cos0)=11(1+0+1+0)(1+1)=11(1+1)(2)=14

No. 6

\displaystyle\lim_{x\to2}\dfrac{\sin(2x-4)}{2-\sqrt{6-x}}= ....
  1. -8
  2. -2
  3. 0
  1. 2
  2. 8

CARA 1

limx2sin(2x4)26x=limx2sin(2x4)26x2+6x2+6x=limx2sin(2x4)(2+6x)4(6x)=limx2sin(2x4)(2+6x)46+x=limx2sin2(x2)(2+6x)2+x=limx2sin2(x2)x2(2+6x)=2(2+62)=2(2+4)=2(2+2)=2(4)=8

CARA 2 : L'hopital

limx2sin(2x4)26x=limx22cos(2x4)126x=limx24cos(2x4)6x=4cos(2(2)4)62=4cos(44)4=4cos0(2)=4(1)(2)=8

No. 7

\displaystyle\lim_{x\to0}\dfrac{\tan 5x-\tan 3x-\tan 2x}{x^3}= ....
tan(5x3x)=tan5xtan3x1+tan5xtan3xtan2x=tan5xtan3x1+tan5xtan3xtan5xtan3x=tan2x+tan2xtan5xtan3x

limx0tan5xtan3xtan2xx3=limx0tan2x+tan2xtan5xtan3xtan2xx3=limx0tan2xtan5xtan3xx3=limx0tan2xxtan5xxtan3xx=253=30

No. 8

\displaystyle\lim_{x\to-1}\dfrac{\sin(2x+2)}{\sqrt{3x+4}-\sqrt{x+2}}=
  1. \dfrac12
  2. 1
  3. 2
  1. 4
  2. 6

CARA 1 : KALI SEKAWAN

limx1sin(2x+2)3x+4x+2=limx1sin(2x+2)3x+4x+23x+4+x+23x+4+x+2=limx1sin(2x+2)(3x+4+x+2)(3x+4)(x+2)=limx1sin(2x+2)(3x+4+x+2)3x+4x2=limx1sin(2x+2)(3x+4+x+2)2x+2=limx1sin(2x+2)2x+2(3x+4+x+2)=1(3(1)+4+1+2)=1+1=2

CARA 2 : L'HOPITAL

limx1sin(2x+2)3x+4x+2=limx12cos(2x+2)323x+412x+2=2cos(2(1)+2)323(1)+4121+2=2cos(2+2)323+4121=2cos032112(1)=2(1)32(1)12=23212=222=21=2

No. 9

\displaystyle\lim_{x\to3}\dfrac{\sin\left(\sqrt{x+1}\right)-2}{x-3}
limx3sin(x+12)x3=limx3sin(x+12)x3x+12x+12x+1+2x+1+2=limx3sin(x+12)x+12x+14(x3)(x+1+2)=limx3sin(x+12)x+12x3(x3)(x+1+2)=limx3sin(x+12)x+121x+1+2=113+1+2=14+2=12+2=14

No. 10

Nilai dari \displaystyle\lim_{x\to\pi}\left(\sin x+\cos x\right) adalah
  1. -1
  2. 1
  3. -2
  1. 1
  2. 3
limxπ(sinx+cosx)=sinπ+cosπ=0+(1)=1

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas