Berikut ini adalah kumpulan soal mengenai Sistem Persamaan tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
\
No. 1
Jika
x dan
y memenuhi
{3^{x+1}-3\cdot2^y=-3} dan
{2\cdot3^x+2^y=10} , maka
{x+y=} ....
\(\eqalign{
3^{x+1}-3\cdot2^xy&=-3\\
3^x\cdot3^1-3\cdot2^y&=-3\\
3\cdot3^x-3\cdot2^y&=-3\\
3^x-2^y&=-1
}\)
\(\eqalign{
3^x-2^y&=-1\\
2\cdot3^x+2^y&=10\qquad&+\\\hline
3\cdot3^x&=9\\
3^x&=3\\
x&=1
}\)
\(\eqalign{
3^x-2^y&=-1\\
3-2^y&=-1\\
-2^y&=-4\\
2^y&=4\\
2^y&=2^2\\
y&=2
}\)
\(\eqalign{
x+y&=1+2\\
&=\boxed{\boxed{3}}
}\)
No. 2
Diketahui
x=a dan
y=b memenuhi sistem persamaan \begin{cases}
\dfrac2{x-1}+\dfrac1{y+1}=-6\\[4pt]
\dfrac{-2}{x-1}+\dfrac2{y+1}=9
\end{cases}
maka
7a+2b=
Misal p=\dfrac1{x-1} dan q=\dfrac1{y+1}
\(\begin{aligned}
2p+q&=-6\\
-2p+2q&=9\qquad+\\\hline
3q&=3\\
q&=1\\
\dfrac1{y+1}&=1\\
y+1&=1\\
y&=0\\
b&=0
\end{aligned}\)
\(\begin{aligned}
2p+q&=-6\\
2p+1&=-6\\
2p&=-7\\
p&=-\dfrac72\\
\dfrac1{x-1}&=-\dfrac72\\
x-1&=-\dfrac27\\
x&=1-\dfrac27\\
a&=\dfrac57
\end{aligned}\)
\(\begin{aligned}
7a+2b&=7\left(\dfrac57\right)+2(0)\\
&=\boxed{\boxed{5}}
\end{aligned}\)
No. 3
Nilai
(x-y) yang memenuhi sistem persamaan
{5x+9y=12} dan
{\dfrac7{x+2}-\dfrac3{y+1}=0} adalah
Penyelesaian
\(\begin{aligned}
\dfrac7{x+2}-\dfrac3{y+1}&=0\\[8pt]
\dfrac7{x+2}&=\dfrac3{y+1}\\[8pt]
7(y+1)&=3(x+2)\\
7y+7&=3x+6\\
-3x+7y&=-1
\end{aligned}\)
\(\begin{aligned}
5x+9y&=12\qquad&\color{red}{\times3}\\
-3x+7y&=-1\qquad&\color{red}{\times5}
\end{aligned}\)
\(\begin{aligned}
15x+27y&=36\\
-15x+35y&=-5\qquad&\color{red}{+}\\\hline\\[-10pt]
62y&=31\\
y&=\dfrac{31}{62}\\[8pt]
y&=\dfrac12
\end{aligned}\)
\(\begin{aligned}
-3x+7\left(\dfrac12\right)&=-1\\[8pt]
-3x+\dfrac72&=-1\\[8pt]
-3x&=-1-\dfrac72\\[8pt]
-3x&=-\dfrac92\\[8pt]
x&=\dfrac32
\end{aligned}\)
\(\begin{aligned}
x-y&=\dfrac32-\dfrac12\\
&=\dfrac22\\
&=\boxed{\boxed{1}}
\end{aligned}\)
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas