Berikut ini adalah kumpulan soal mengenai Sistem Persamaan tingkat SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
No. 1
Jika
A dan
B memenuhi \begin{cases}\dfrac{3A}{2A+3B}+\dfrac{6B}{2A-3B}=3\\[8pt]\dfrac{-6A}{2A+3B}+\dfrac{3B}{2A-3B}=-1\end{cases} maka
\dfrac{AB}{4A^2-9B^2}= ....
-\dfrac23
-\dfrac13
-\dfrac19
Penyelesaian
Misal {x=\dfrac{A}{2A+3B}} dan {y=\dfrac{B}{2A-3B}}
\(\begin{array}{rl|l}
3x+6y&=3&\times2\\
-6x+3y&=-1&\times1
\end{array}\)
\(\eqalign{
6x+12y&=6\\
-6x+3y&=-1\qquad+\\\hline
15y&=5\\
y&=\dfrac13\\
\dfrac{B}{2A-3B}&=\dfrac13
}\)
\(\eqalign{
3x+6y&=3\\
3x+6\left(\dfrac13\right)&=3\\
3x+2&=3\\
x&=\dfrac13\\
\dfrac{A}{2A+3B}&=\dfrac13
}\)
\(\eqalign{
\dfrac{AB}{4A^2-9B^2}&=\left(\dfrac{A}{2A+3B}\right)\left(\dfrac{B}{2A-3B}\right)\\[4pt]
&=\left(\dfrac13\right)\left(\dfrac13\right)\\[4pt]
&=\dfrac19
}\)
No. 2
Jika
x dan
y memenuhi
{\dfrac{2x+y}{3x-2y+3}=\dfrac1{15}} dan
{\dfrac1{x+y}=\dfrac7{-2x+y}} maka nilai
{x-y=} ....
Penyelesaian
\(\eqalign{
\dfrac{2x+y}{3x-2y+3}&=\dfrac1{15}\\
15(2x+y)&=3x-2y+3\\
30x+15y&=3x-2y+3\\
27x+17y&=3
}\)
\(\eqalign{
\dfrac1{x+y}&=\dfrac7{-2x+y}\\
-2x+y&=7x+7y\\
-9x&=6y\\
3x+2y&=0
}\)
\(\begin{array}{rl|l}
27x+17y&=3&\times1\\
3x+2y&=0&\times9
\end{array}\)
\(\eqalign{
27x+17y&=3\\
27x+18y&=0\qquad-\\\hline
-y&=3\\
y&=-3
}\)
\(\eqalign{
3x+2y&=0\\
3x+2(-3)&=0\\
x&=2
}\)
\(\eqalign{
x-y&=2-(-3)\\
&=5
}\)
No. 3
Jika
{ax+y=4} ,
{x+by=7} , dan
{ab=2} , maka nilai
{2ax-3y=}
{28-32a}
{28-35a}
{28-38a}
Penyelesaian \(\begin{aligned}
x+by&=7&\qquad\color{red}{\times a}\\
ax+aby&=7a\\
ax+2y&=7a
\end{aligned}\)
(\begin{aligned}
ax+y&=4&\qquad\color{red}{\times 7}\\
ax+2y&=7a&\qquad\color{red}{\times 5}
\end{aligned}\)
\(\begin{aligned}
7ax+7y&=28\\
5ax+10y&=35a&\qquad\color{red}{-}\\\hline
2ax-3y&=\boxed{\boxed{28-35a}}
\end{aligned}\)
No. 4
Jika
3x-2y = 4 dan
\dfrac{216^x}{72^y} = 162 , maka nilai dari
y adalah . . .
Penyelesaian
\(\begin{aligned}
\dfrac{216^x}{72^y}&= 162\\
\dfrac{\left(6^3\right)^x}{\left(2\cdot6^2\right)^y}&= 162\\
\dfrac{6^{3x}}{2^y\cdot6^{2y}}&= 162\\
\dfrac{6^{3x-2y}}{2^y}&= 2\cdot81\\
\dfrac{6^4}{2^y}&= 2\cdot3^4\\
2^y&=\dfrac{6^4}{2\cdot3^4}\\
&=\dfrac{2^4\cdot3^4}{2\cdot3^4}\\
&=2^3\\
y&=3
\end{aligned}\)
No. 5
Jika
a dan
b memenuhi \begin{cases}\dfrac2{2a-b}+\dfrac7{2a+b}&=3\\\dfrac1{2a-b}-\dfrac7{2a+b}&=0\end{cases} maka
{a+b=}
Penyelesaian
\(\eqalign{
\dfrac2{2a-b}+\dfrac7{2a+b}&=3\\\dfrac1{2a-b}-\dfrac7{2a+b}&=0\qquad&{\color{red}+}\\\hline
\dfrac3{2a-b}&=3\\
2a-b&=1
}\)
\(\eqalign{
\dfrac2{2a-b}+\dfrac7{2a+b}&=3\\
\dfrac21+\dfrac7{2a+b}&=3\\
2+\dfrac7{2a+b}&=3\\
\dfrac7{2a+b}&=1\\
2a+b&=7
}\)
\(\eqalign{
2a-b&=1\\
2a+b&=7\qquad&{\color{red}+}\\\hline
4a&=8\\
2a&=4\\
a&=2
}\)
\(\eqalign{
2a+b&=7\\
4+b&=7\\
b&=3
}\)
\(\eqalign{
a+b&=2+3\\
&=\boxed{\boxed{5}}
}\)
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas