Berikut ini adalah kumpulan soal mengenai Invers Fungsi tipe SBMPTN. Jika ingin bertanya soal, silahkan gabung ke grup
Facebook atau
Telegram .
No. 1
Jika
{f(x+2)=\dfrac{2x-5}{3x+10}} maka nilai
x yang memenuhi
{\left(f^{-1}\circ f^{-1}\right)(2x+1)=1} adalah....
Penyelesaian \(\eqalign{
f(x+2)&=\dfrac{2x-5}{3x+10}\\[4pt]
f(x)&=\dfrac{2(x-2)-5}{3(x-2)+10}\\[4pt]
&=\dfrac{2x-4-5}{3x-6+10}\\[4pt]
&=\dfrac{2x-9}{3x+4}\\[4pt]
f^{-1}&=\dfrac{-4x-9}{3x-2}
}\)
\(\eqalign{
\left(f^{-1}\circ f^{-1}\right)(2x+1)&=1\\[4pt]
f^{-1}\left(f^{-1}(2x+1)\right)&=1\\[4pt]
\dfrac{-4(2x+1)-9}{3(2x+1)-2}&=f(1)\\[4pt]
\dfrac{-8x-4-9}{6x+3-2}&=\dfrac{2(1)-9}{3(1)+4}\\[4pt]
\dfrac{-8x-13}{6x+1}&=-1\\[4pt]
-8x-13&=-6x-1\\
x&=-6
}\)
No. 2
Jika grafik
y=\dfrac{2x+1}{ax-3} dan inversnya berpotongan di titik
\left(x_0,-1\right) , maka nilai
x_0+a adalah ....
Penyelesaian y^{-1}=\dfrac{3x+1}{ax-2}
\(\begin{aligned}
\dfrac{2x_0+1}{ax_0-3}&=-1\\
2x_0+1&=-ax_0+3\\
ax_0&=-2x_0+2
\end{aligned}\)
\(\begin{aligned}
\dfrac{3x_0+1}{ax_0-2}&=-1\\
3x_0+1&=-ax_0+2\\
ax_0&=-3x_0+1\\
-2x_0+2&=-3x_0+1\\
x_0&=-1
\end{aligned}\)
\(\begin{aligned}
ax_0&=-2x_0+2\\
a(-1)&=-2(-1)+2\\
-a&=4\\
a&=-4
\end{aligned}\)
\(\begin{aligned}
x_0+a&=-1+(-4)\\
&=\boxed{\boxed{-5}}
\end{aligned}\)
No. 3
Jika
(f\circ g)(x)=\dfrac{6x+3}{2x-5} dan
{g(x)=4x-11} , maka hasil dari
\displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx adalah
{72\ln2-3}
{36\ln 3-2}
{36\ln 2-6}
{36\ln 2 - 3}
{72\ln 3-2}
Penyelesaian \(\begin{aligned}
(f\circ g)(x)&=\dfrac{6x+3}{2x-5}\\[10pt]
f(g(x))&=\dfrac{12x+6}{4x-10}\\[10pt]
f(4x-11)&=\dfrac{3(4x-11)+39}{4x-11+1}\\[10pt]
f(x)&=\dfrac{3x+39}{x+1}\\[10pt]
f^{-1}(x)&=\dfrac{-x+39}{x-3}\\[10pt]
f^{-1}(x-1)&=\dfrac{-(x-1)+39}{x-1-3}\\[10pt]
&=\dfrac{-x+1+39}{x-4}\\[10pt]
&=\dfrac{-x+40}{x-4}
\end{aligned}\)
\(\begin{aligned}
\displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+40}{x-4}}{4(3)-11}\ dx\\
&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+4+36}{x-4}}{12-11}\ dx\\
&=\displaystyle\intop_5^8\dfrac{-1+\dfrac{36}{x-4}}1\ dx\\
&=\displaystyle\intop_5^8\left(-1+\dfrac{36}{x-4}\right)\ dx\\
&=\left[-x+36\ln|x-4|\right]_5^8\\
&=\left[-8+36\ln|8-4|\right]-\left[-5+36\ln|5-4|\right]\\
&=\left[-8+36\ln4\right]-\left[-5+36\ln1\right]\\
&=\left[-8+36\ln2^2\right]-\left[-5-42(0)\right]\\
&=\left[-8+72\ln2\right]-\left[-5\right]\\
&=-8+72\ln2+5\\
&=\boxed{\boxed{72\ln2-3}}
\end{aligned}\)
No. 4
Jika fungsi
f dan
g mempunyai invers dan memenuhi
{f(3x)=g(x-2)} , maka
f^{-1}(x)=
{3g^{-1}(x)+12}
{3g^{-1}(x)+10}
{3g^{-1}(x)+8}
{3g^{-1}(x)+6}
{3g^{-1}(x)+4}
Penyelesaian Misal f(3x)=g(x-2)=k
\(\begin{aligned}
g(x-2)&=k\\
x-2&=g^{-1}(k)\\
x&=g^{-1}(k)+2
\end{aligned}\)
\(\begin{aligned}
f(3x)&=k\\
f^{-1}(k)&=3x\\
&=3\left(g^{-1}(k)+2\right)\\
&=3g^{-1}(k)+6\\
f^{-1}(x)&=\boxed{\boxed{3g^{-1}(x)+6}}
\end{aligned}\)
No. 5
Diberikan fungsi
{f:\mathbb{R}\to\mathbb{R}} dengan
{f\left({^2\negmedspace\log2x}\right)=3x+1} adalah invers dari fungsi
f , maka
{f^{-1}(7)=}
Penyelesaian
CARA 1 Misal {^2\negmedspace\log}2x=p
\(\begin{aligned}
2x&=2^p\\
x&=\dfrac{2^p}2\\
&=2^{p-1}
\end{aligned}\)
\(\begin{aligned}
f\left({^2\negmedspace\log}2x\right)&=3x+1\\
f(p)&=3\cdot2^{p-1}+1\\
f(x)&=3\cdot2^{x-1}+1\\
y&=3\cdot2^{x-1}+1\\
y-1&=3\cdot2^{x-1}\\
\dfrac{y-1}3&=2^{x-1}\\[8pt]
{^2\negmedspace\log}\dfrac{y-1}3&=x-1\\[8pt]
{^2\negmedspace\log}\dfrac{y-1}3+1&=x\\[8pt]
x&={^2\negmedspace\log}\dfrac{y-1}3+1\\[8pt]
f^{-1}(x)&={^2\negmedspace\log}\dfrac{x-1}3+1\\[8pt]
f^{-1}(7)&={^2\negmedspace\log}\dfrac{7-1}3+1\\[8pt]
&={^2\negmedspace\log}\dfrac63+1\\[8pt]
&={^2\negmedspace\log}2+1\\[8pt]
&=1+1\\
&=\boxed{\boxed{2}}
\end{aligned}\)
CARA CEPAT \(\begin{aligned}
f\left({^2\negmedspace\log2x}\right)&=3x+1\\
f^{-1}(3x+1)&={^2\negmedspace\log2x}
\end{aligned}\)
\(\begin{aligned}
3x+1&=7\\
3x&=6\\
x&=2
\end{aligned}\)
\(\begin{aligned}
f^{-1}(7)&={^2\negmedspace\log}2(2)\\
&={^2\negmedspace\log}4\\
&=\boxed{\boxed{2}}
\end{aligned}\)
No. 6
Fungsi
{f : R \to R} dan
{g : R \to R}
didefinisikan dengan
{f(x) = 2^{3x-1}} dan
{g(x) =
4(x + 2)^3} . Jika
f^{-1} adalah invers dari
f maka
\left(f^{-1}\circ g\right)(x) =
{^2\negmedspace\log\sqrt[3]{2x}}
{^2\negmedspace\log(2x)^3}
{^2\negmedspace\log(2x + 4)}
{^2\negmedspace\log 2x}
{^2\negmedspace\log(2x + 2)}
Penyelesaian
\(\eqalign{
f(x)& = 2^{3x-1}\\
3x-1&={^2\negmedspace\log f(x)}\\
3x&={^2\negmedspace\log f(x)}+1\\
x&=\dfrac{{^2\negmedspace\log f(x)}+1}3\\
f^{-1}(x)&=\dfrac{{^2\negmedspace\log x}+1}3
}\)
\(\eqalign{
\left(f^{-1}\circ g\right)(x)&=f^{-1} \left(g(x)\right)\\
&=f^{-1} \left(4(x + 2)^3\right)\\
&=\dfrac{{^2\negmedspace\log \left(4(x + 2)^3\right)}+1}3\\
&=\dfrac{{^2\negmedspace\log4}+ {^2\negmedspace\log(x + 2)^3}+1}3\\
&=\dfrac{2+ 3\ {^2\negmedspace\log(x + 2)}+1}3\\
&=\dfrac{3\ {^2\negmedspace\log(x + 2)}+3}3\\
&={^2\negmedspace\log(x + 2)}+1\\
&={^2\negmedspace\log(x + 2)}+{^2\negmedspace\log2}\\
&={^2\negmedspace\log(x + 2)2}\\
&=\boxed{\boxed{^2\negmedspace\log(2x + 4)}}
}\)
No. 7
Diketahui
f(x)=ax+b dengan
f^{-1}(11)=2 dan
f^{-1}(8)=1 dengan
f^{-1} menyatakan fungsi invers
f .
Nilai
\displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h= ....
Ganesha Operation
Penyelesaian
\(\begin{aligned}
f^{-1}(11)&=2\\
f(2)&=11\\
2a+b&=11
\end{aligned}\)
\(\begin{aligned}
f^{-1}(8)&=1\\
f(1)&=8\\
a+b&=8
\end{aligned}\)
\(\begin{aligned}
2a+b&=11\\
a+b&=8\qquad-\\\hline
a&=3
\end{aligned}\)
\(\begin{aligned}
a+b&=8\\
3+b&=8\\
b&=5
\end{aligned}\)
f(x)=3x+5
\(\begin{aligned}
\displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(3(3)+5)-3(3(3+h)+5)}h\\
&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(9+5)-3(9+3h+5)}h\\
&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(14)-3(14+3h)}h\\
&=\displaystyle\lim_{h\to0}\dfrac{42+14h-42+9h}h\\
&=\displaystyle\lim_{h\to0}\dfrac{5h}h\\
&=\displaystyle\lim_{h\to0}5\\
&=\boxed{\boxed{5}}
\end{aligned}\)
No. 8
Diketahui fungsi
{f(x) = x^2 + 2x + 11} ,
dengan
x\geq-1 , maka nilai dari
f^{-1}(14)
adalah
Alternatif Penyelesaian
Misal f^{-1}(14)=x
\(\eqalign{
f(x)&=14\\
x^2 + 2x + 11&=14\\
x^2+2x-3&=0\\
(x+3)(x-1)&=0
}\)
x=-3 atau x=1
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas