Berikut ini adalah kumpulan soal Persamaan Trigonometri tingkat dasar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
Tipe:
No. 11
Tentukan himpunan penyelesaian persamaan berikut, untuk
0\degree\leq x\leq360\degree
\cos2x+\sin x=1
Alternatif Penyelesaian
\(\eqalign{
\cos2x+\sin x&=1\\
1-2\sin^2x+\sin x&=1\\
-2\sin^2x+\sin x&=0\\
2\sin^2x-\sin x&=0\\
\sin x(2\sin x-1)&=0
}\)
\sin x=0
\sin x=\sin0\degree
\(\eqalign{
x&=0^\circ+k\cdot360^\circ\\
x&=k\cdot360^\circ
}\) \(\eqalign{
x&=180^\circ-0^\circ+k\cdot360^\circ\\
x&=180^\circ+k\cdot360^\circ
}\)
k=0
x=0\degree x=180\degree
k=1
x=360\degree x=540\degree (TM)
2\sin x-1=0
\(\eqalign{
2\sin x&=1\\
\sin x&=\dfrac12\\
\sin x&=\sin30^\circ
}\)
x=30^\circ+k\cdot360^\circ \(\eqalign{
x&=180^\circ-30^\circ+k\cdot360^\circ\\
x&=150^\circ+k\cdot360^\circ
}\)
k=0
x=30\degree x=150\degree
No. 12
Nilai
\tan x yang memenuhi persamaan
{\cos2x+7\cos x-3=0} adalah ....
\sqrt3
\dfrac12\sqrt3
\dfrac13\sqrt3
Alternatif Penyelesaian
\(\eqalign{
\cos2x+7\cos x-3&=0\\
2\cos^2x-1+7\cos x-3&=0\\
2\cos^2x+7\cos x-4&=0\\
(2\cos x-1)(\cos x+4)&=0
}\)
\cos x=\dfrac12 atau \cos x=-4 (TM)
\(\eqalign{
x&=60^\circ\\
\tan x&=\tan60^\circ\\
&=\boxed{\boxed{\sqrt3}}
}\)
No. 13
\sin5x+\sin3x=\sqrt3\cos x ,
0\leq x\leq360\degree
Alternatif Penyelesaian
\(\eqalign{
\sin5x+\sin3x&=\sqrt3\cos x\\
2\sin\left(\dfrac{5x+3x}2\right)\cos\left(\dfrac{5x-3x}2\right)&=\sqrt3\cos x\\
2\sin4x\cos x&=\sqrt3\cos x\\
2\sin4x\cos x-\sqrt3\cos x&=0\\
\cos x\left(2\sin4x-\sqrt3\right)&=0
}\)
\(\eqalign{
\cos x&=0\\
\cos x&=\cos90^\circ\\
x&=\left\{90^\circ,270^\circ\right\}
}\) \(\eqalign{
2\sin4x-\sqrt3&=0\\
2\sin4x&=\sqrt3\\
\sin4x&=\dfrac12\sqrt3\\
\sin4x&=\sin60^\circ\\
4x&=\left\{60^\circ,120^\circ,420^\circ,480^\circ,780^\circ,840^\circ,1140^\circ,1200^\circ\right\}\\
x&=\left\{15^\circ,30^\circ,105^\circ,120^\circ,195^\circ,210^\circ,285^\circ,300^\circ\right\}
}\)
No. 14
2\sqrt3\sin5x-2\cos5x=2 , untuk
0\degree\leq x\leq360\degree
Alternatif Penyelesaian
\(\eqalign{
2\sqrt3\sin5x-2\cos5x&=2\qquad&{\color{red}:2}\\
\sqrt3\sin5x-\cos5x&=1
}\)
a=-1 , b=\sqrt3
\(\eqalign{
k&=\sqrt{a^2+b^2}\\
&=\sqrt{(-1)^2+\left(\sqrt3\right)^2}\\
&=\sqrt{1+3}\\
&=\sqrt4\\
&=2
}\)
\(\eqalign{
\tan\alpha&=\dfrac{b}a\\
&=\dfrac{\sqrt3}{-1}\\
&=-\sqrt3\\
\alpha&=120^\circ
}\)
\(\eqalign{2\cos\left(x-120^\circ\right)&=1\\
\cos\left(x-120^\circ\right)&=\dfrac12\\
\cos\left(x-120^\circ\right)&=\cos60^\circ\\
x-120^\circ&=\{-60^\circ,60^\circ\}\\
x&=\{-60^\circ+120^\circ,60^\circ+120^\circ\}\\
x&=\{60^\circ,180^\circ\}
}\)
No. 15
Tentukan himpunan penyelesaian dari persamaan
{\sin^2x + \cos^2x=\sin \left( x +\dfrac{\pi}4\right)} , untuk
0\leq x\leq\pi .
Alternatif Penyelesaian
\(\eqalign{
\sin^2x + \cos^2x&=\sin \left( x +\dfrac{\pi}4\right)\\
1&=\sin \left( x +\dfrac{\pi}4\right)\\
\sin \left( x +\dfrac{\pi}4\right)&=1\\
x +\dfrac{\pi}4&=\dfrac{\pi}2\\
x&=\dfrac{\pi}2-\dfrac{\pi}4\\
&=\boxed{\boxed{\dfrac{\pi}4}}
}\)
No. 16
Tentukan himpunan penyelesaian dari persamaan
{-\sin\theta+\sqrt3\cos\theta=2} , untuk
{0^\circ\leq x\leq360^\circ}
Alternatif Penyelesaian
\(\eqalign{
-\sin\theta+\sqrt3\cos\theta&=2\\
\sqrt3\cos\theta-\sin\theta&=2
}\)
a=\sqrt3 ,
b=-1
\left(\sqrt3,-1\right) berada di kuadran IV
k=\sqrt{a^2+b^2}=\sqrt{\left(\sqrt3\right)^3+(-1)^2}=\sqrt{3+1}=\sqrt4=2
\(\eqalign{
\tan\alpha&=\dfrac{b}a\\
&=\dfrac{-1}{\sqrt3}\\
&=-\dfrac13\sqrt3\\
\alpha&=360^\circ-30^\circ\\
&=330^\circ
}\)
\(\eqalign{
\sqrt3\cos\theta-\sin\theta&=2\\
k\cos(\theta-\alpha)&=2\\
2\cos(\theta-30^\circ)&=2\\
\cos(\theta-30^\circ)&=1\\
\cos(\theta-30^\circ)&=\cos0^\circ
}\)
\(\eqalign{
\theta-30^\circ&=0^\circ+k\cdot360^\circ\\
\theta&=30^\circ+k\cdot360^\circ
}\) \(\eqalign{
\theta-30^\circ&=-0^\circ+k\cdot360^\circ\\
\theta&=30^\circ+k\cdot360^\circ
}\)
k=0
\theta=30^\circ
k=1
\theta=390^\circ (TM)
No. 17
Tentukan himpunan penyelesaian
{\sqrt6\sin x+\sqrt3=0} , untuk
0\degree\leq x\leq 360\degree
Alternatif Penyelesaian
\(\eqalign{
\sqrt6\sin x+\sqrt3&=0\\
\sqrt6\sin x&=-\sqrt3\\
\sin x&=\dfrac{-\sqrt3}{\sqrt6}{\color{red}\cdot\dfrac{\sqrt6}{\sqrt6}}\\
&=\dfrac{-\sqrt{18}}6\\
&=\dfrac{-3\sqrt2}6\\
&=-\dfrac12\sqrt2\\
&=\sin(180^\circ+45\circ)\\
&=\sin225^\circ
}\)
x=225^\circ+k\cdot360^\circ \(\eqalign{
x&=180^\circ-225^\circ+k\cdot360^\circ\\
x&=-45^\circ+k\cdot360^\circ\\
}\)
k=0
x=225\degree x=-45\degree (TM)
k=1
x=585\degree (TM) x=315\degree
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas