SBMPTN Zone : Persamaan Trigonometri

Berikut ini adalah kumpulan soal Persamaan Trigonometri tingkat SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

Tipe:


No. 1

Jika \dfrac{2\tan x}{1-\tan^2x}-5=0, dengan 0\lt x\lt\dfrac{\pi}2 maka {\cos^2x-\sin^2x=} ....
  1. \dfrac1{\sqrt{26}}
  2. \dfrac2{\sqrt{26}}
  3. \dfrac3{\sqrt{26}}
  1. \dfrac4{\sqrt{26}}
  2. \dfrac5{\sqrt{26}}
\(\eqalign{ \dfrac{2\tan x}{1-\tan^2x}-5&=0\\ \tan2x-5&=0\\ \tan2x&=5 }\)
\(\eqalign{ mi&=\sqrt{1^2+5^2}\\ &=\sqrt{26} }\)

\(\eqalign{ \cos^2x-\sin^2x&=\cos2x\\ &=\dfrac1{\sqrt{26}} }\)

No. 2

Jika {a\cos x-b\sin x=c}, maka {a\sin x+b\cos x=}
  1. {a^2+b^2+c^2}
  2. \sqrt{a^2+b^2+c^2}
  3. {a^2+b^2-c^2}
  1. \sqrt{a^2+b^2-c^2}
  2. {a^2-b^2-c^2}
\(\begin{aligned} \left(a\cos x-b\sin x\right)^2+\left(a\sin x+b\cos x\right)^2&=a^2\cos^2x-2ab\sin x\cos x+b^2\sin^2x+a^2\sin^2x+2ab\sin x\cos x+b^2\cos^2x\\ c^2+\left(a\sin x+b\cos x\right)^2&=a^2\left(\cos^2x+\sin^2x\right)+b^2\left(\sin^2x+\cos^2x\right)\\ c^2+\left(a\sin x+b\cos x\right)^2&=a^2\left(1\right)+b^2\left(1\right)\\ c^2+\left(a\sin x+b\cos x\right)^2&=a^2+b^2\\ \left(a\sin x+b\cos x\right)^2&=a^2+b^2-c^2\\ a\sin x+b\cos x&=\boxed{\boxed{\sqrt{a^2+b^2-c^2}}} \end{aligned}\)

No. 3

Jika 2\cos x\sin x+1=2\cos x+\sin x dengan 0\leq x\leq2\pi, jumlah semua nilai x yang memenuhi persamaan tersebut adalah....
  1. \dfrac56\pi
  2. \dfrac{13}6\pi
  3. 2\pi
  1. \dfrac52\pi
  2. 3\pi
\(\begin{aligned} 2\cos x\sin x+1&=2\cos x+\sin x\\ 2\cos x\sin x-2\cos x-\sin x+1&=0\\ (2\cos x-1)(\sin x-1)&=0 \end{aligned}\)
  • 2\cos x-1=0
    \cos x=\dfrac12
    x=\left\{\dfrac13\pi,\dfrac53\pi\right\}
  • \sin x-1=0
    \sin x=1
    x=\left\{\dfrac12\pi\right\}
\dfrac13\pi+\dfrac53\pi+\dfrac12\pi=\boxed{\boxed{\dfrac52\pi}}

No. 4

Diketahui sistem persamaan \begin{cases} \sin(x+y)=1+\dfrac15\cos y\\[8pt] \sin(x-y)=-1+\cos y \end{cases} dengan {0\lt y\lt\dfrac{\pi}2}. Nilai \sin x=
  1. \dfrac25
  2. \dfrac35
  3. \dfrac45
  1. 1
  2. \dfrac56
\(\begin{aligned} \sin(x+y)&=1+\dfrac15\cos y\\[8pt] \sin x\cos y+\cos x\sin y&=1+\dfrac15\cos y \end{aligned}\)

\(\begin{aligned} \sin(x-y)&=-1+\cos y\\ \sin x\cos y-\cos x\sin y&=-1+\cos y \end{aligned}\)

\(\begin{aligned} \sin x\cos y+\cos x\sin y&=1+\dfrac15\cos y\\ \sin x\cos y-\cos x\sin y&=-1+\cos y&\qquad\color{red}{+}\\\hline 2\sin x\cos y&=\dfrac65\cos y\\[8pt] 2\sin x&=\dfrac65\\ \sin x&=\boxed{\boxed{\dfrac35}} \end{aligned}\)

No. 5

Jika x memenuhi {-2 \csc x + 2 \cot x + 3 \sin x = 0} untuk 0 \lt x \lt π, maka \cos x =
  1. -\dfrac23
  2. -\dfrac13
  3. -\dfrac12
  1. \dfrac12
  2. \dfrac23
\(\eqalign{ -2 \csc x + 2 \cot x + 3 \sin x &= 0\\ -\dfrac2{\sin x}+\dfrac{2\cos x}{\sin x}+ 3 \sin x &= 0\qquad&{\color{red}\times\sin x}\\ -2+2\cos x+3\sin^2x&=0\\ -2+2\cos x+3\left(1-\cos^2x\right)&=0\\ -2+2\cos x+3-3\cos^2x&=0\\ -3\cos^2x+2\cos x+1&=0\\ 3\cos^2x-2\cos x-1&=0\\ (3\cos x+1)(\cos x-1)&=0 }\)
\cos x=-\dfrac13 atau \cos x=1

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas