Berikut ini adalah kumpulan soal Persamaan Trigonometri tingkat SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
No. 1
Jika
\dfrac{2\tan x}{1-\tan^2x}-5=0 , dengan
0\lt x\lt\dfrac{\pi}2 maka
{\cos^2x-\sin^2x=} ....
\dfrac1{\sqrt{26}}
\dfrac2{\sqrt{26}}
\dfrac3{\sqrt{26}}
\dfrac4{\sqrt{26}}
\dfrac5{\sqrt{26}}
Penyelesaian
\(\eqalign{ \dfrac{2\tan x}{1-\tan^2x}-5&=0\\ \tan2x-5&=0\\ \tan2x&=5 }\)
\(\eqalign{
mi&=\sqrt{1^2+5^2}\\
&=\sqrt{26}
}\)
\(\eqalign{
\cos^2x-\sin^2x&=\cos2x\\
&=\dfrac1{\sqrt{26}}
}\)
No. 2
Jika
{a\cos x-b\sin x=c} , maka
{a\sin x+b\cos x=}
{a^2+b^2+c^2}
\sqrt{a^2+b^2+c^2}
{a^2+b^2-c^2}
\sqrt{a^2+b^2-c^2}
{a^2-b^2-c^2}
Penyelesaian \(\begin{aligned}
\left(a\cos x-b\sin x\right)^2+\left(a\sin x+b\cos x\right)^2&=a^2\cos^2x-2ab\sin x\cos x+b^2\sin^2x+a^2\sin^2x+2ab\sin x\cos x+b^2\cos^2x\\
c^2+\left(a\sin x+b\cos x\right)^2&=a^2\left(\cos^2x+\sin^2x\right)+b^2\left(\sin^2x+\cos^2x\right)\\
c^2+\left(a\sin x+b\cos x\right)^2&=a^2\left(1\right)+b^2\left(1\right)\\
c^2+\left(a\sin x+b\cos x\right)^2&=a^2+b^2\\
\left(a\sin x+b\cos x\right)^2&=a^2+b^2-c^2\\
a\sin x+b\cos x&=\boxed{\boxed{\sqrt{a^2+b^2-c^2}}}
\end{aligned}\)
No. 3
Jika
2\cos x\sin x+1=2\cos x+\sin x dengan
0\leq x\leq2\pi , jumlah semua nilai
x yang memenuhi persamaan tersebut adalah....
\dfrac56\pi
\dfrac{13}6\pi
2\pi
Penyelesaian
\(\begin{aligned}
2\cos x\sin x+1&=2\cos x+\sin x\\
2\cos x\sin x-2\cos x-\sin x+1&=0\\
(2\cos x-1)(\sin x-1)&=0
\end{aligned}\)
2\cos x-1=0
\cos x=\dfrac12
x=\left\{\dfrac13\pi,\dfrac53\pi\right\}
\sin x-1=0
\sin x=1
x=\left\{\dfrac12\pi\right\}
\dfrac13\pi+\dfrac53\pi+\dfrac12\pi=\boxed{\boxed{\dfrac52\pi}}
No. 4
Diketahui sistem persamaan \begin{cases}
\sin(x+y)=1+\dfrac15\cos y\\[8pt]
\sin(x-y)=-1+\cos y
\end{cases}
dengan
{0\lt y\lt\dfrac{\pi}2} . Nilai
\sin x=
\dfrac25
\dfrac35
\dfrac45
Penyelesaian \(\begin{aligned}
\sin(x+y)&=1+\dfrac15\cos y\\[8pt]
\sin x\cos y+\cos x\sin y&=1+\dfrac15\cos y
\end{aligned}\)
\(\begin{aligned}
\sin(x-y)&=-1+\cos y\\
\sin x\cos y-\cos x\sin y&=-1+\cos y
\end{aligned}\)
\(\begin{aligned}
\sin x\cos y+\cos x\sin y&=1+\dfrac15\cos y\\
\sin x\cos y-\cos x\sin y&=-1+\cos y&\qquad\color{red}{+}\\\hline
2\sin x\cos y&=\dfrac65\cos y\\[8pt]
2\sin x&=\dfrac65\\
\sin x&=\boxed{\boxed{\dfrac35}}
\end{aligned}\)
No. 5
Jika
x memenuhi
{-2 \csc x + 2 \cot x + 3 \sin x = 0}
untuk
0 \lt x \lt π , maka
\cos x =
-\dfrac23
-\dfrac13
-\dfrac12
Penyelesaian
\(\eqalign{
-2 \csc x + 2 \cot x + 3 \sin x &= 0\\
-\dfrac2{\sin x}+\dfrac{2\cos x}{\sin x}+ 3 \sin x &= 0\qquad&{\color{red}\times\sin x}\\
-2+2\cos x+3\sin^2x&=0\\
-2+2\cos x+3\left(1-\cos^2x\right)&=0\\
-2+2\cos x+3-3\cos^2x&=0\\
-3\cos^2x+2\cos x+1&=0\\
3\cos^2x-2\cos x-1&=0\\
(3\cos x+1)(\cos x-1)&=0
}\)
\cos x=-\dfrac13 atau \cos x=1
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas