Ralat soal:
\displaystyle\lim_{n\to\infty}\left\{f'\left(x+\dfrac1h\right)-f'(x)\right\} seharusnya tertulis \displaystyle\lim_{h\to\infty}h\left\{f'\left(x+\dfrac1h\right)-f'(x)\right\}.
\(\begin{aligned}
f'(x)&=2\sin x\cos x\\
&=\sin2x
\end{aligned}\)
Misal
\dfrac1h=k
\(\begin{aligned}
\displaystyle\lim_{h\to\infty}h\left\{f'\left(x+\dfrac1h\right)-f'(x)\right\}&=\displaystyle\lim_{k\to0}\dfrac{\sin2\left(x+k\right)-\sin2x}k\\
&=\displaystyle\lim_{k\to0}\dfrac{\sin(2x+2k)-\sin2x}k\\
&=\displaystyle\lim_{k\to0}\dfrac{\sin2x\cos2k+\cos2x\sin2k-\sin2x}k\\
&=\displaystyle\lim_{k\to0}\dfrac{\sin2x(\cos2k-1)+\cos2x\sin2k}k\\
&=\sin2x\displaystyle\lim_{k\to0}\dfrac{\cos2k-1}k+\cos2x\displaystyle\lim_{k\to0}\dfrac{\sin2k}k\\
&=\sin2x(0)+\cos2x(2)\\
&=2\cos2x
\end{aligned}\)
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas