SBMPTN Zone : Persamaan Eksponen (Exponential Equation)

Berikut ini adalah kumpulan soal mengenai persamaan eksponen tipe SBMPTN. Jika ingin bertanya soal, silahkan tulis soalnya di kolom komentar. Kamu juga bisa bertanya di grup Telegram https://t.me/matematikazoneidgrup atau grup Facebook https://web.facebook.com/groups/matematikazoneid/.

Tipe:


No. 1

Jika x_1 dan x_2 adalah akar-akar {4^{\frac{x}2}-5\cdot2^{\frac{x}2+1}-4\cdot2^{\frac{x}2}+a=0} dan {x_1+x_2={^2\negmedspace\log}5^2+2}, maka {a=}
  1. 10
  2. 5
  3. 25
  1. 4
  2. 16
\(\begin{aligned} 4^{\frac{x}2}-5\cdot2^{\frac{x}2+1}-4\cdot2^{\frac{x}2}+a&=0\\ \left(2^{\frac{x}2}\right)^2+(\cdots)2^{\frac{x}2}+a&=0 \end{aligned}\)

\(\begin{aligned} x_1+x_2&={^2\negmedspace\log}5^2+2\\ 2^{x_1+x_2}&=2^{^2\negmedspace\log5^2+2}\\ \left(2^{\frac{x_1+x_2}2}\right)^2&=2^{^2\negmedspace\log5^2}\cdot2^2\\ \left(2^{\frac{x_1}2}\cdot2^{\frac{x_2}2}\right)^2&=5^2\cdot2^2\\ \left(\dfrac{a}1\right)^2&=(5\cdot2)^2\\ a^2&=10^2\\ a&=\boxed{\boxed{10}} \end{aligned}\)

No. 2

Jika x_1, x_2 adalah akar-akar {9^x-3^{x+1}-3^{x+2}-3\cdot3^{x+3}+a=0} dimana {x_1+x_2=3\cdot{^3\negmedspace\log}2}, maka a= ....
  1. 27
  2. 16
  3. 9
  1. 8
  2. 4
\(\begin{aligned} 9^x-3^{x+1}-3^{x+2}-3\cdot3^{x+3}+a&=0\\ \left(3^2\right)^x-3^x\cdot3^1-3^x\cdot3^2-3\cdot3^x\cdot3^3+a&=0\\ 3^{2x}-3\cdot3^x-9\cdot3^x-3\cdot3^x\cdot27+a&=0\\ \left(3^x\right)^2-3\cdot3^x-9\cdot3^x-81\cdot3^x+a&=0\\ \left(3^x\right)^2-93\cdot3^x+a&=0 \end{aligned}\)
A=1, B=-93, C=a
CARA 1CARA 2
\(\begin{aligned} 3^{x_1+x_2}&=3^{3\cdot{^3\negmedspace\log2}}\\ 3^{x_1}\cdot3^{x_2}&=3^{{^3\negmedspace\log}2^3}\\ \dfrac{C}A&=3^{{^3\negmedspace\log}8}\\ \dfrac{a}1&=8\\ a&=8 \end{aligned}\)\(\begin{aligned} x_1+x_2&=3\cdot{^3\negmedspace\log}2\\ {^3\negmedspace\log}\dfrac{C}A&={^3\negmedspace\log}2^3\\ {^3\negmedspace\log}\dfrac{a}1&={^3\negmedspace\log}8\\ {^3\negmedspace\log}a&={^3\negmedspace\log}8\\ a&=8 \end{aligned}\)

No. 3

Diketahui 6^{x+2} = 18^{x-1}, maka nilai x adalah . . .
  1. {1+3\ {^3\negthinspace\log6}}
  2. {1+4\ {^3\negthinspace\log6}}
  3. {2+3\ {^3\negthinspace\log4}}
  1. {2+4\ {^3\negthinspace\log4}}
  2. 3+2\ {^3\negthinspace\log4}
\(\begin{aligned} 6^{x+2}&= 18^{x-1}\\ 6^{x-1+3}&= 18^{x-1}\\ 6^{x-1}\cdot6^3&= 18^{x-1}\\ 6^3&=\dfrac{18^{x-1}}{6^{x-1}}\\ 6^3&=3^{x-1}\\ x-1&={^3\negthinspace\log6^3}\\ x&=1+3\ {^3\negthinspace\log6} \end{aligned}\)

No. 4

Nilai c yang memenuhi {(0{,}11)^{x^2+3x-c}\gt(0{,}0121)^{x^2+2x+3}} untuk semua x bilangan riil adalah
  1. c\gt-\dfrac{23}4
  2. c\gt-6
  3. c\lt-\dfrac{23}4
  1. c\lt-6
  2. c\lt6
\(\eqalign{ (0{,}11)^{x^2+3x-c}&\gt(0{,}0121)^{x^2+2x+3}\\ (0{,}11)^{x^2+3x-c}&\gt\left(0{,}11^2\right)^{x^2+2x+3}\\ (0{,}11)^{x^2+3x-c}&\gt\left(0{,}11\right)^{2x^2+4x+6}\\ x^2+3x-c&\lt2x^2+4x+6\\ x^2+x+c+6&\gt0 }\)

\(\eqalign{ D&\lt0\\ b^2-4ac&\lt0\\ 1^2-4(1)(c+6)&\lt0\\ 1-4c-24&\lt0\\ -4c-23&\lt0\\ -4c&\lt23\\ c&\gt-\dfrac{23}4 }\)

No. 5

Diketahui {f(x) = 2^{5- x} + 2x - 12}. Jika {f\left(x_1\right) =f\left(x_2\right) = 0} maka {x_1x_2 =}
  1. -6
  2. -5
  3. 4
  1. 5
  2. 6
\(\eqalign{ f(x)&=0\\ 2^{5- x} + 2x - 12&=0\\ \dfrac{2^5}{2^x}+ 2x - 12&=0\\ \dfrac{32}{2^x}+ 2x - 12&=0\qquad&{\color{red}\times2^x}\\ 32+\left(2^x\right)^2-12\cdot2^x&=0\\ \left(2^x\right)^2-12\cdot2^x+32&=0\\ \left(2^x-4\right)\left(2^x-8\right)&=0 }\)
\(\eqalign{ 2^{x_1}-4&=0\\ 2^{x_1}&=4\\ 2^{x_1}&=2^2\\ x_1&=2 }\)
\(\eqalign{ 2^{x_2}-8&=0\\ 2^{x_2}&=8\\ 2^{x_2}&=2^3\\ x_2&=3 }\)

{x_1x_2=(2)(3)=\boxed{\boxed{6}}}

No. 6

Nilai x yang memenuhi dari persamaan {\sqrt[3]{6^x+6^{x+1}}=7} adalah
  1. 5\left({^6\negmedspace\log7}\right)
  2. 4\left({^6\negmedspace\log7}\right)
  3. 3\left({^6\negmedspace\log7}\right)
  1. 2\left({^6\negmedspace\log7}\right)
  2. ^6\negmedspace\log7
\(\eqalign{ \sqrt[3]{6^x+6^{x+1}}&=7\\ 6^x+6\cdot6^x&=7^3\\ 7\cdot6^x&=7^3\\ 6^x&=7^2\\ x&={^6\negmedspace\log7^2}\\ &=\boxed{\boxed{2\left({^6\negmedspace\log7}\right)}} }\)

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas