Berikut ini adalah kumpulan soal mengenai
Persamaan Eksponen . Jika ingin bertanya soal, silahkan gabung ke grup
Telegram ,
Signal ,
Discord , atau
WhatsApp .
No.
\dfrac{8^x+27^x}{12^x+18^x}=\dfrac76 , jumlah dari nilai semua penyelesaian
x yang mungkin adalah....
Alternatif Penyelesaian
\begin{aligned}
\dfrac{8^x+27^x}{12^x+18^x}&=\dfrac76\\[8pt]
\dfrac{\left(2^3\right)^x+\left(3^3\right)^x}{(6\cdot2)^x+(6\cdot3)^x}&=\dfrac76\\[8pt]
\dfrac{2^{3x}+3^{3x}}{6^x\cdot2^x+6^x\cdot3^x}&=\dfrac76\\[8pt]
\dfrac{\left(2^x\right)^3+\left(3^x\right)^3}{6^x\left(2^x+3^x\right)}&=\dfrac76\\[8pt]
\dfrac{\left(2^x+3^x\right)\left(\left(2^x\right)^2-\left(2^x\right)\left(3^x\right)+\left(3^x\right)^2\right)}{(2\cdot3)^x\left(2^x+3^x\right)}&=\dfrac76\\[8pt]
\dfrac{\left(2^x\right)^2-\left(2^x\right)\left(3^x\right)+\left(3^x\right)^2}{\left(2^x\right)\left(3^x\right)}&=\dfrac76\\[8pt]
\dfrac{\left(2^x\right)^2}{\left(2^x\right)\left(3^x\right)}-\dfrac{\left(2^x\right)\left(3^x\right)}{\left(2^x\right)\left(3^x\right)}+\dfrac{\left(3^x\right)^2}{\left(2^x\right)\left(3^x\right)}&=\dfrac76\\[8pt]
\dfrac{2^x}{3^x}-1+\dfrac{3^x}{2^x}&=\dfrac76\\[8pt]
\left(\dfrac23\right)^x+\left(\dfrac32\right)^x&=\dfrac{13}6
\end{aligned}
Misal \left(\dfrac23\right)^x=y
\begin{aligned}
y+\dfrac1y&=\dfrac{13}6\\[8pt]
y^2+1&=\dfrac{13}6y\\[8pt]
y^2-\dfrac{13}6y+1&=0
\end{aligned}
\begin{aligned}
y_1y_2&=\dfrac{c}a\\[8pt]
\left(\dfrac23\right)^{x_1}\left(\dfrac23\right)^{x_2}&=\dfrac11\\[8pt]
\left(\dfrac23\right)^{x_1+x_2}&=1\\[8pt]
x_1+x_2&=0
\end{aligned}
No.
Diketahui sistem persamaan:
3^a+4^b=6
3^{\frac{a}b}=4
Nilai
\dfrac1a+\dfrac1b= ....
Alternatif Penyelesaian
\(\eqalign{
3^{\frac{a}b}&=4\\
\left(3^{\frac{a}b}\right)^b&=4^b\\
3^a&=4^b
}\)
\(\eqalign{
3^a+4^b&=6\\
3^a+3^a&=6\\
2\cdot3^a&=6\\
3^a&=3\\
a&=1\\
\dfrac1a&=1
}\)
\(\eqalign{
3^{\frac{a}b}&=4\\
3^{\frac1b}&=4\\
\dfrac1b&={^3\negmedspace\log4}
}\)
\dfrac1a+\dfrac1b=\boxed{\boxed{1+{^3\negmedspace\log4}}}
No.
Jika
30^x=2^{-a}=3^{-b}=5^{-c} , maka
{\dfrac1x+\dfrac1a+\dfrac1b+\dfrac1c=}
Alternatif Penyelesaian
30^x=2^{-a}=3^{-b}=5^{-c}=k
30=k^{\frac1x} , 2=k^{-\frac1a} , 3=k^{-\frac1b} , 5=k^{-\frac1c}
\(\eqalign{
30&=2\cdot3\cdot5\\
k^{\frac1x}&=k^{-\frac1a}\cdot k^{-\frac1b}\cdot k^{-\frac1c}\\
k^{\frac1x}&=k^{-\frac1a-\frac1b-\frac1c}\\
\dfrac1x&=-\dfrac1a-\dfrac1b-\dfrac1c\\
\dfrac1x+\dfrac1a+\dfrac1b+\dfrac1c&=\boxed{\boxed{0}}
}\)
No.
Jumlah semua bilangan real
x yang memenuhi persamaan
{\left(3^x-27\right)^2+\left(5^x-625\right)^2=\left(3^x+5^x-652\right)^2} adalah ....
Alternatif Penyelesaian
Misal
\left(3^x-27\right)=a dan
\left(5^x-625\right)=b
\begin{aligned}
a^2+b^2&=(a+b)^2\\
a^2+b^2&=a^2+2ab+b^2\\
ab&=0\\
\left(3^x-27\right)\left(5^x-625\right)&=0
\end{aligned}
\begin{aligned}
3^x-27&=0\\
3^x&=27\\
x&=\boxed{3}
\end{aligned}
\begin{aligned}
5^x-625&=0\\
5^x&=625\\
x&=\boxed{4}
\end{aligned}
3+4=\boxed{\boxed{7}}
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas