Berikut ini adalah kumpulan soal mengenai integral tentu tipe SBMPTN. Jika ingin bertanya soal, silahkan gabung ke grup
Facebook atau
Telegram .
No. 1 Jika
\displaystyle\intop_{-4}^4f(x)(\sin x+1)\ dx=8 , dengan
f(x) fungsi genap dan
\displaystyle\intop_{-2}^4f(x)\ dx=4 , maka
\displaystyle\intop_{-2}^0f(x)\ dx= ....
SBMPTN 2017
\(\begin{aligned}
\displaystyle\intop_{-4}^4f(x)(\sin x+1)\ dx&=8\\
\displaystyle\intop_{-4}^4f(x)\sin x\ dx+\displaystyle\intop_{-4}^4f(x)\ dx&=8
\end{aligned}\)
Karena f(x) genap dan \sin x ganjil, maka f(x)\sin x ganjil. Sehingga \displaystyle\int_{-4}^4f(x)\sin x\ dx=0 .
\(\begin{aligned}
\displaystyle\intop_{-4}^4f(x)\ dx&=8\\
2\displaystyle\intop_0^4f(x)\ dx&=8\\
\displaystyle\intop_0^4f(x)\ dx&=4
\end{aligned}\)
\(\begin{aligned}
\displaystyle\intop_{-2}^4f(x)\ dx&=4\\
\displaystyle\intop_{-2}^0f(x)\ dx+\displaystyle\intop_0^4f(x)\ dx&=4\\
\displaystyle\intop_{-2}^0f(x)\ dx+4&=4\\
\displaystyle\intop_{-2}^0f(x)\ dx&=0
\end{aligned}\)
No. 2 Diberikan fungsi
f dan
g yang memenuhi sistem
\displaystyle\int_0^1f(x)\ dx+\left(\int_0^2g(x)\ dx\right)^2=3
f(x)=3x^2+4x+\displaystyle\int_0^2g(x)\ dx , dengan
{\displaystyle\int_0^2g(x)\ dx\neq0}
Nilai
f(1)= ....
Misal \displaystyle\intop_0^2g(x)\ dx=A
f(x)=3x^2+4x+A
\(\begin{aligned}
\displaystyle\intop_0^1f(x)\ dx+\left(\displaystyle\intop_0^2g(x)\ dx\right)^2&=3\\
\displaystyle\intop_0^1\left(3x^2+4x+A\right)\ dx+A^2&=3\\
\left[x^3+2x^2+Ax\right]_0^1+A^2&=3\\
3+A+A^2&=3\\
A^2+A&=0\\
A(A+1)&=0
\end{aligned}\)
A=0 (TM) atau A=-1
\(\begin{aligned}
f(x)&=3x^2+4x-1\\
f(1)&=3(1)^2+4(1)-1\\
&=\boxed{\boxed{6}}
\end{aligned}\)
No. 3 f(x) adalah fungsi yang terdefinisi pada himpunan bilangan real dan
f'(x) adalah turunan pertamanya. Jika
{f(0)=f(2)=3} dan
{f'(0)=f'(2)=-1} maka
{\displaystyle\int_0^2x\cdot f''(x)\ dx=} ....
Misal
\(\begin{aligned}
u&=x\\
du&=dx
\end{aligned}\) \(\begin{aligned}
dv&=f''(x)\ dx\\
v&=f'(x)
\end{aligned}\)
\(\begin{aligned}
\displaystyle\intop u\ dv&=uv-\displaystyle\intop v\ du\\
\displaystyle\intop_0^2x\cdot f''(x)\ dx&=\left[xf'(x)-\displaystyle\intop_0^2f'(x)\ dx\right]_0^2\\
&=\left[xf'(x)-f(x)\right]_0^2\\
&=\left[(2)f'(2)-f(2)\right]-\left[(0)f'(0)-f(0)\right]\\
&=\left[(2)(-1)-3\right]-\left[0-3\right]\\
&=\left[-2-3\right]-\left[-3\right]\\
&=-5+3\\
&=\boxed{\boxed{-2}}
\end{aligned}\)
No. 4 Diberikan fungsi
f(x) yang simetri terhadap sumbu
y . Jika
\displaystyle\intop_3^4f(x)\ dx=12 . maka
\displaystyle\intop_1^2f(5-x)\ dx= ....
Ganesha Operation
Misal 5-x=u maka
\(\begin{aligned}
-dx&=du\\
dx&=-du
\end{aligned}\)
Jika x=1 maka
5-1=4
Jika x=2 maka
5-2=3
\(\begin{aligned}
\displaystyle\intop_1^2f(5-x)\ dx&=\displaystyle\intop_4^3f(u)\ (-du)\\
&=\displaystyle\intop_3^4f(u)\ du\\
&=\displaystyle\intop_3^4f(x)\ dx\\
&=12
\end{aligned}\)
No. 5 Jika
(f\circ g)(x)=\dfrac{6x+3}{2x-5} dan
g(x)=4x-11 , maka hasil dari
\displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx adalah ....
72\ln2-3
36\ln 3-2
36\ln 2-6
\(\begin{aligned}
(f\circ g)(x)&=\dfrac{6x+3}{2x-5}\\[10pt]
f(g(x))&=\dfrac{12x+6}{4x-10}\\[10pt]
f(4x-11)&=\dfrac{3(4x-11)+39}{4x-11+1}\\[10pt]
f(x)&=\dfrac{3x+39}{x+1}\\[10pt]
f^{-1}(x)&=\dfrac{-x+39}{x-3}\\[10pt]
f^{-1}(x-1)&=\dfrac{-(x-1)+39}{x-1-3}\\[10pt]
&=\dfrac{-x+1+39}{x-4}\\[10pt]
&=\dfrac{-x+40}{x-4}
\end{aligned}\)
\(\begin{aligned}
\displaystyle\intop_5^8\dfrac{f^{-1}(x-1)}{g(3)}\ dx&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+40}{x-4}}{4(3)-11}\ dx\\
&=\displaystyle\intop_5^8\dfrac{\dfrac{-x+4+36}{x-4}}{12-11}\ dx\\
&=\displaystyle\intop_5^8\dfrac{-1+\dfrac{36}{x-4}}1\ dx\\
&=\displaystyle\intop_5^8\left(-1+\dfrac{36}{x-4}\right)\ dx\\
&=\left[-x+36\ln|x-4|\right]_5^8\\
&=\left[-8+36\ln|8-4|\right]-\left[-5+36\ln|5-4|\right]\\
&=\left[-8+36\ln4\right]-\left[-5+36\ln1\right]\\
&=\left[-8+36\ln2^2\right]-\left[-5-42(0)\right]\\
&=\left[-8+72\ln2\right]-\left[-5\right]\\
&=-8+72\ln2+5\\
&=\boxed{\boxed{72\ln2-3}}
\end{aligned}\)
No. 6 Jika diketahui
\dfrac{df(x)}{dx}=g(x) kontinu pada interval
p\leq x\leq q maka nilai dari
{\displaystyle\intop_p^q f(x)g(x)\ dx=} ....
\dfrac{\left[f(q)\right]^2-\left[f(p)\right]^2}3
\dfrac{\left[f(q)\right]^2-\left[f(p)\right]^2}2
\dfrac{\left[g(q)\right]^2-\left[g(p)\right]^2}3
\dfrac{\left[g(q)\right]^2-\left[g(p)\right]^2}2
\dfrac{\left[f(q)\right]^2-\left[g(p)\right]^2}2
\(\begin{aligned}
\dfrac{df(x)}{dx}&=g(x)\\
df(x)&=g(x)\ dx
\end{aligned}\)
Misal
\(\begin{aligned}
u&=f(x)\\
du&=df(x)\\
&=g(x)\ dx
\end{aligned}\)
\(\begin{aligned}
\displaystyle\intop_p^q f(x)g(x)\ dx&=\displaystyle\intop_p^q u\ du\\
&=\left[\dfrac12u^2\right]_p^q\\
&=\left[\dfrac12\left[f(x)\right]^2\right]_p^q\\
&=\dfrac12\left[f(q)\right]^2-\dfrac12\left[f(p)\right]^2\\
&=\boxed{\boxed{\dfrac{\left[f(q)\right]^2-\left[f(p)\right]^2}2}}
\end{aligned}\)
No. 7 Jika
\displaystyle\intop_{-4}^4f(x)(\sin x+1)\ dx=8 , dengan
f(x) fungsi genap dan
{\displaystyle\intop_{-2}^4f(x)(\sin x+1)\ dx=4} , maka
{\displaystyle\intop_{-2}^0f(x)(\sin x+1)\ dx=} ....
ingat bahwa jika fungsi genap dikali fungsi ganjil hasilnya fungsi ganjil. \sin x merupakan fungsi ganjil sehingga f(x)\sin x merupakan fungsi ganjil.
\(\begin{aligned}
\displaystyle\intop_{-4}^4f(x)(\sin x+1)\ dx&=8\\
\displaystyle\intop_{-4}^4(f(x)\sin x+f(x))\ dx&=8\\
\displaystyle\intop_{-4}^4(f(x)\sin x)\ dx+\displaystyle\intop_{-4}^4f(x)\ dx&=8\\
0+2\displaystyle\intop_0^4f(x)\ dx&=8\\
\displaystyle\intop_0^4f(x)\ dx&=4
\end{aligned}\)
\(\begin{aligned}
\displaystyle\intop_{-2}^4f(x)\ dx&=\displaystyle\intop_{-2}^0f(x)\ dx+\displaystyle\intop_0^4f(x)\ dx\\
4&=\displaystyle\intop_{-2}^0f(x)\ dx+4\\
\displaystyle\intop_{-2}^0f(x)\ dx&=\boxed{\boxed{0}}
\end{aligned}\)
No. 8 Diketahui fungsi
{f(x)=x^3+3x^2-5x+\displaystyle\intop_{-1}^1f(x)\ dx} . Nilai
f(1)= ....
Misal \displaystyle\intop_{-1}^1f(x)\ dx=c .
\(\begin{aligned}
\displaystyle\intop_{-1}^1\left(x^3+3x^2-5x+c\right)\ dx&=c\\
\left[\dfrac14x^4+x^3-\dfrac52x^2+cx\right]_{-1}^1&=c\\
\left[\dfrac14(1)^4+(1)^3-\dfrac52(1)^2+c(1)\right]-\left[\dfrac14(-1)^4+(-1)^3-\dfrac52(-1)^2+c(-1)\right]&=c\\
\left[\dfrac14(1)+1-\dfrac52(1)+c\right]-\left[\dfrac14(1)+(-1)-\dfrac52(1)-c\right]&=c\\
\left[\dfrac14+1-\dfrac52+c\right]-\left[\dfrac14-1-\dfrac52-c\right]&=c\\
\dfrac14+1-\dfrac52+c-\dfrac14+1+\dfrac52+c&=c\\
2c+2&=c\\
c&=-2
\end{aligned}\)
\(\begin{aligned}
f(x)&=x^3+3x^2-5x-2\\
f(1)&=1^3+3(1)^2-5(1)-2\\
&=1+3(1)-5-2\\
&=1+3-5-2\\
&=\boxed{\boxed{-3}}
\end{aligned}\)
No. 9 Misalkan
f(x)=3x+b . Jika
\displaystyle\intop_{-1}^1f(x)\ dx ,
\displaystyle\intop_{-1}^1\left[f(x)\right]^2\ dx ,
\displaystyle\intop_{-1}^1\left[f(x)\right]^3\ dx membentuk suatu barisan geometri, maka nilai
b^2 adalah
SBMPTN 2016, Kode 207
\(\begin{aligned}
\displaystyle\intop_{-1}^1f(x)\ dx&=\displaystyle\intop_{-1}^1(3x+b)\ dx\\
&=\left[\dfrac32x^2+bx\right]_{-1}^1\\
&=\left[\dfrac32(1)^2+b(1)\right]-\left[\dfrac32(-1)^2+b(-1)\right]\\
&=\left[\dfrac32(1)+b\right]-\left[\dfrac32(1)-b\right]\\
&=\left[\dfrac32+b\right]-\left[\dfrac32-b\right]\\
&=\dfrac32+b-\dfrac32+b\\
&=2b
\end{aligned}\)
\(\begin{aligned}
\displaystyle\intop_{-1}^1\left[f(x)\right]^2\ dx&=\displaystyle\intop_{-1}^1(3x+b)^2\ dx\\
&=\displaystyle\intop_{-1}^1\left(9x^2+6bx+b^2\right)\ dx\\
&=\left[3x^3+3bx^2+b^2x\right]_{-1}^1\\
&=\left[3(1)^3+3b(1)^2+b^2(1)\right]-\left[3(-1)^3+3b(-1)^2+b^2(-1)\right]\\
&=\left[3(1)+3b(1)+b^2\right]-\left[3(-1)+3b(1)-b^2\right]\\
&=\left[3+3b+b^2\right]-\left[-3+3b-b^2\right]\\
&=3+3b+b^2+3-3b+b^2\\
&=2b^2+6
\end{aligned}\)
\(\begin{aligned}
\displaystyle\intop_{-1}^1\left[f(x)\right]^3\ dx&=\displaystyle\intop_{-1}^1(3x+b)^3\ dx\\
&=\displaystyle\intop_{-1}^1(3x+b)^3\ \dfrac{d(3x+b)}3\\
&=\dfrac13\left[\dfrac14(3x+b)^4\right]_{-1}^1\\
&=\dfrac1{12}\left[(3(1)+b)^4-(3(-1)+b)^4\right]\\
&=\dfrac1{12}\left[(3+b)^4-(-3+b)^4\right]\\
&=\dfrac1{12}\left((3+b)^2+(-3+b)^2\right)\left((3+b)^2-(-3+b)^2\right)\\
&=\dfrac1{12}\left(9+6b+b^2+9-6b+b^2\right)\left((3+b)+(-3+b)\right)\left((3+b)-(-3+b)\right)\\
&=\dfrac1{12}\left(2b^2+18\right)\left(3+b-3+b\right)\left(3+b+3-b\right)\\
&=\dfrac1{12}\left(2b^2+18\right)\left(2b\right)\left(6\right)\\
&=2b^3+18b
\end{aligned}\)
Misal b^2=p
\(\begin{aligned}
{U_2}^2&=U_1\cdot U_3\\
\left(2b^2+6\right)^2&=(2b)\left(2b^3+18b\right)\\
4b^4+24b^2+36&=4b^4+36b^2\\
36&=12b^2\\
b^2&=\boxed{\boxed{3}}
\end{aligned}\)
No. 10 Jika
{\displaystyle\intop_0^1\dfrac{x}{1-x}dx=b} , maka
{\displaystyle\intop_0^1\dfrac1{1-x}dx=}
\(\begin{aligned}
\displaystyle\intop_0^1\dfrac1{1-x}dx&=\displaystyle\intop_0^1\dfrac{1-x+x}{1-x}dx\\
&=\displaystyle\intop_0^1\left(1+\dfrac{x}{1-x}\right)dx
\end{aligned}\)
\(\begin{aligned}
\displaystyle\intop_0^1\left(1+\dfrac{x}{1-x}\right)dx&=\displaystyle\intop_0^11\ dx+\displaystyle\intop_0^1\dfrac{x}{1-x}dx\\
&=[x]_0^1+b\\
&=1-0+b\\
&=\boxed{\boxed{1+b}}
\end{aligned}\)
\color{blue}{\displaystyle\intop_n^{n+1}c\ dx=c} , dengan c adalah konstanta
\displaystyle\intop_0^1\left(1+\dfrac{x}{1-x}\right)dx=\boxed{\boxed{1+b}}
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas