Exercise Zone : Integral Tentu [2]

Berikut ini adalah kumpulan soal mengenai Integral Tentu. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:


No.

Jika nilai {\displaystyle\intop_1^2f(x)\ dx=10}, maka nilai {\displaystyle\intop_0^1x\cdot f\left(x^2+1\right)\ dx} adalah
  1. 3
  2. 4
  3. 5
  1. 6
  2. 7
Misal u=x^2+1
\begin{aligned} du&=2x\ dx\\ \dfrac12du&=x\ dx \end{aligned}

x=0\rightarrow u=0^2+1=1
x=1\rightarrow u=1^2+1=2

\begin{aligned} \displaystyle\intop_0^1x\cdot f\left(x^2+1\right)\ dx&=\dfrac12\displaystyle\intop_1^2f(u)\ du\\ &=\dfrac12(10)\\ &=\boxed{\boxed{5}} \end{aligned}

No.

Hasil dari {\displaystyle\intop_2^42x^3+6x^2-2x-5\ dx=} ....
\begin{aligned} \displaystyle\intop_2^42x^3+6x^2-2x-5\ dx&=\left[\dfrac24x^4+\dfrac63x^3-\dfrac22x^2-5x\right]_2^4\\ &=\left[\dfrac12x^4+2x^3-x^2-5x\right]_2^4\\ &=\left(\dfrac12(4)^4+2(4)^3-(4)^2-5(4)\right)-\left(\dfrac12(2)^4+2(2)^3-(2)^2-5(2)\right)\\ &=\left(8+128-16-20\right)-\left(8+16-4-10\right)\\ &=100-20\\ &=\boxed{\boxed{80}} \end{aligned}

No.

Nilai {\displaystyle\intop_1^4\left(3\sqrt{x}-2\right)\ dx=} ....
  1. 2
  2. 4
  3. 6
  1. 7
  2. 8
\begin{aligned} \displaystyle\intop_1^4\left(3\sqrt{x}-2\right)\ dx&=\displaystyle\intop_1^4\left(3x^{\frac12}-2\right)\ dx\\ &=\left.3\cdot\dfrac23x^{\frac32}-2x\right|_1^4\\ &=\left.2x\sqrt{x}-2x\right|_1^4\\ &=\left(2(4)\sqrt4-2(4)\right)-\left(2(1)\sqrt1-2(1)\right)\\ &=\left(8(2)-8\right)-\left(2(1)-2\right)\\ &=\left(16-8\right)-\left(2-2\right)\\ &=8-0\\ &=\boxed{\boxed{8}} \end{aligned}

No.

Nilai {\displaystyle\intop_1^4\dfrac2{x\sqrt{x}}\ dx=} ....
  1. -12
  2. -4
  3. -3
  1. 2
  2. \dfrac32
\begin{aligned} \displaystyle\intop_1^4\dfrac2{x\sqrt{x}}\ dx&=\displaystyle\intop_1^4\dfrac2{x\cdot x^{\frac12}}\ dx\\ &=\displaystyle\intop_1^4\dfrac2{x^{\frac32}}\ dx\\ &=\displaystyle\intop_1^42x^{-\frac32}\ dx\\ &=\left.2\left(-\dfrac21x^{-\frac12}\right)\right|_1^4\\ &=\left.-\dfrac4{x^{\frac12}}\right|_1^4\\ &=\left.-\dfrac4{\sqrt{x}}\right|_1^4\\ &=\left(-\dfrac4{\sqrt4}\right)-\left(-\dfrac4{\sqrt1}\right)\\ &=-\dfrac42+\dfrac41\\ &=-2+4\\ &=\boxed{\boxed{2}} \end{aligned}

No.

Hasil {\displaystyle\intop_1^3\left(x^2+\dfrac16\right)\ dx=} ....
  1. 9\dfrac13
  2. 9
  3. 8
  1. \dfrac{10}3
  2. 3
\begin{aligned} \displaystyle\intop_1^3\left(x^2+\dfrac16\right)\ dx&=\left.\dfrac13x^3+\dfrac16x\right|_1^3\\ &=\left(\dfrac13(3)^3+\dfrac16(3)\right)-\left(\dfrac13(1)^3+\dfrac16(1)\right)\\ &=\left(9+\dfrac12\right)-\left(\dfrac13+\dfrac16\right)\\ &=9+\dfrac12-\dfrac36\\ &=9+\dfrac12-\dfrac12\\ &=\boxed{\boxed{9}} \end{aligned}

No.

Hasil {\displaystyle\intop_0^2x^2\left(x+2\right)\ dx=} ....
  1. 6
  2. 6\dfrac13
  3. 6\dfrac23
  1. 9\dfrac13
  2. 20
\begin{aligned} \displaystyle\intop_0^2x^2\left(x+2\right)\ dx&=\displaystyle\intop_0^2\left(x^3+2x^2\right)\ dx\\ &=\left.\dfrac14x^4+\dfrac23x^3\right|_0^2\\ &=\left(\dfrac14(2)^4+\dfrac23(2)^3\right)-\left(\dfrac14(0)^4+\dfrac23(0)^3\right)\\ &=\left(4+\dfrac{16}3\right)-0\\ &=4+5\dfrac13\\ &=\boxed{\boxed{9\dfrac13}} \end{aligned}

No.

Hasil dari \displaystyle\intop_{-1}^03x\sqrt[7]{1+x}\ dx=
  1. -\dfrac{120}{147}
  2. -\dfrac{157}{120}
  3. -\dfrac{147}{120}
  1. \dfrac{147}{120}
  2. \dfrac{120}{147}

CARA 1: SUBSTITUSI

Misal u=1+x\rightarrow x=u-1
du=dx

\begin{aligned} \displaystyle\intop_{-1}^03x\sqrt[7]{1+x}\ dx&=\displaystyle\intop_{-1}^03(u-1)\sqrt[7]{u}\ du\\ &=\displaystyle\intop_{-1}^03(u-1)u^{\frac17}\ du\\ &=\displaystyle\intop_{-1}^0\left(3u^{\frac87}-3u^{\frac17}\right)\ du\\ &=\left[3\cdot\dfrac7{15}u^{\frac{15}7}-3\cdot\dfrac78u^{\frac87}\right]_{-1}^0\\ &=\left[\dfrac75(1+x)^{\frac{15}7}-\dfrac{21}8(1+x)^{\frac87}\right]_{-1}^0\\ &=\left[\dfrac75(1+0)^{\frac{15}7}-\dfrac{21}8(1+0)^{\frac87}\right]-\left[\dfrac75(1+(-1))^{\frac{15}7}-\dfrac{21}8(1+(-1))^{\frac87}\right]\\ &=\left[\dfrac75(1)^{\frac{15}7}-\dfrac{21}8(1)^{\frac87}\right]-\left[\dfrac75(0)^{\frac{15}7}-\dfrac{21}8(0)^{\frac87}\right]\\ &=\left[\dfrac75(1)-\dfrac{21}8(1)\right]-\left[\dfrac75(0)-\dfrac{21}8(0)\right]\\ &=\left[\dfrac75-\dfrac{21}8\right]-\left[0-0\right]\\ &=-\dfrac{49}{40}\\ &=\boxed{\boxed{-\dfrac{147}{120}}} \end{aligned}

CARA 2: PARSIAL

udv
3x\sqrt[7]{1+x}=(1+x)^{\frac17}
3\dfrac78(1+x)^{\frac87}
0\dfrac78\cdot\dfrac7{15}(1+x)^{\frac{15}7}=\dfrac{49}{120}(1+x)^{\frac{15}7}
\begin{aligned} \displaystyle\intop_{-1}^03x\sqrt[7]{1+x}\ dx&=\left[3x\cdot\dfrac78(1+x)^{\frac87}-3\cdot\dfrac{49}{120}(1+x)^{\frac{15}7}\right]_{-1}^0\\ &=\left[\dfrac{21}8x(1+x)^{\frac87}-\cdot\dfrac{147}{120}(1+x)^{\frac{15}7}\right]_{-1}^0\\ &=\left[\dfrac{21}8(0)(1+0)^{\frac87}-\cdot\dfrac{147}{120}(1+0)^{\frac{15}7}\right]-\left[\dfrac{21}8(-1)(1+(-1))^{\frac87}-\cdot\dfrac{147}{120}(1+(-1))^{\frac{15}7}\right]\\ &=\left[0-\cdot\dfrac{147}{120}(1)^{\frac{15}7}\right]-\left[-\dfrac{21}8(0)^{\frac87}-\cdot\dfrac{147}{120}(0)^{\frac{15}7}\right]\\ &=\left[-\cdot\dfrac{147}{120}(1)\right]-0\\ &=\boxed{\boxed{-\dfrac{147}{120}}} \end{aligned}

No.

Hasil dari \displaystyle\intop_0^1\dfrac{10(18x+6)\ dx}{\sqrt{9x^2+6x+1}}=
  1. 40
  2. 50
  3. 60
  1. 70
  2. 80
Misal u=9x^2+6x+1
du=(18x+6)\ dx

x=0\rightarrow u=9(0)^2+6(0)+1=1
x=1\rightarrow u=9(1)^2+6(1)+1=16

\begin{aligned} \displaystyle\intop_0^1\dfrac{10(18x+6)\ dx}{\sqrt{9x^2+6x+1}}&=\displaystyle\intop_1^{16}\dfrac{10\ du}{\sqrt{u}}\\ &=\displaystyle\intop_1^{16}\dfrac{10\ du}{u^{\frac12}}\\ &=\displaystyle\intop_1^{16}10u^{-\frac12}\ du\\ &=\left[10\cdot2u^{\frac12}\right]_1^{16}\\ &=\left[20\sqrt{u}\right]_1^{16}\\ &=20\sqrt{16}-20\sqrt{1}\\ &=20(4)-20(1)\\ &=80-20\\ &=\boxed{\boxed{60}} \end{aligned}

No.

\displaystyle\intop_0^3x\sqrt{1+x}\ dx= ....
Misal
u=1+x\to x=u-1
du=dx

x=0\to u=1+0=1
x=3\to u=1+3=4

\begin{aligned} \displaystyle\intop_0^3x\sqrt{1+x}\ dx&=\displaystyle\intop_1^4(u-1)\sqrt{u}\ du\\ &=\displaystyle\intop_1^4(u-1)u^{\frac12}\ du\\ &=\displaystyle\intop_1^4\left(u^{\frac32}-u^{\frac12}\right)\ du\\ &=\left[\dfrac25u^{\frac52}-\dfrac23u^{\frac32}\right]_1^4\\ &=\left(\dfrac25(4)^{\frac52}-\dfrac23(4)^{\frac32}\right)-\left(\dfrac25(1)^{\frac52}-\dfrac23(1)^{\frac32}\right)\\ &=\left(\dfrac25(32)-\dfrac23(8)\right)-\left(\dfrac25(1)-\dfrac23(1)\right)\\ &=\left(\dfrac{64}5-\dfrac{16}3\right)-\left(\dfrac25-\dfrac23\right)\\ &=\left(\dfrac{192}{15}-\dfrac{80}{15}\right)-\left(\dfrac6{15}-\dfrac{10}{15}\right)\\ &=\left(\dfrac{112}{15}\right)-\left(-\dfrac4{15}\right)\\ &=\dfrac{112}{15}+\dfrac4{15}\\ &=\boxed{\boxed{\dfrac{116}{15}}} \end{aligned}

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas