Exercise Zone : Integral Tentu [2]

Berikut ini adalah kumpulan soal mengenai Integral Tentu. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:


No.

Jika nilai {\displaystyle\intop_1^2f(x)\ dx=10}, maka nilai {\displaystyle\intop_0^1x\cdot f\left(x^2+1\right)\ dx} adalah
  1. 3
  2. 4
  3. 5
  1. 6
  2. 7
Misal u=x^2+1
du=2x dx12du=x dx

x=0\rightarrow u=0^2+1=1
x=1\rightarrow u=1^2+1=2

01xf(x2+1) dx=1212f(u) du=12(10)=5

No.

Hasil dari {\displaystyle\intop_2^42x^3+6x^2-2x-5\ dx=} ....
242x3+6x22x5 dx=[24x4+63x322x25x]24=[12x4+2x3x25x]24=(12(4)4+2(4)3(4)25(4))(12(2)4+2(2)3(2)25(2))=(8+1281620)(8+16410)=10020=80

No.

Nilai {\displaystyle\intop_1^4\left(3\sqrt{x}-2\right)\ dx=} ....
  1. 2
  2. 4
  3. 6
  1. 7
  2. 8
14(3x2) dx=14(3x122) dx=323x322x|14=2xx2x|14=(2(4)42(4))(2(1)12(1))=(8(2)8)(2(1)2)=(168)(22)=80=8

No.

Nilai {\displaystyle\intop_1^4\dfrac2{x\sqrt{x}}\ dx=} ....
  1. -12
  2. -4
  3. -3
  1. 2
  2. \dfrac32
142xx dx=142xx12 dx=142x32 dx=142x32 dx=2(21x12)|14=4x12|14=4x|14=(44)(41)=42+41=2+4=2

No.

Hasil {\displaystyle\intop_1^3\left(x^2+\dfrac16\right)\ dx=} ....
  1. 9\dfrac13
  2. 9
  3. 8
  1. \dfrac{10}3
  2. 3
13(x2+16) dx=13x3+16x|13=(13(3)3+16(3))(13(1)3+16(1))=(9+12)(13+16)=9+1236=9+1212=9

No.

Hasil {\displaystyle\intop_0^2x^2\left(x+2\right)\ dx=} ....
  1. 6
  2. 6\dfrac13
  3. 6\dfrac23
  1. 9\dfrac13
  2. 20
02x2(x+2) dx=02(x3+2x2) dx=14x4+23x3|02=(14(2)4+23(2)3)(14(0)4+23(0)3)=(4+163)0=4+513=913

No.

Hasil dari \displaystyle\intop_{-1}^03x\sqrt[7]{1+x}\ dx=
  1. -\dfrac{120}{147}
  2. -\dfrac{157}{120}
  3. -\dfrac{147}{120}
  1. \dfrac{147}{120}
  2. \dfrac{120}{147}

CARA 1: SUBSTITUSI

Misal u=1+x\rightarrow x=u-1
du=dx

103x1+x7 dx=103(u1)u7 du=103(u1)u17 du=10(3u873u17) du=[3715u157378u87]10=[75(1+x)157218(1+x)87]10=[75(1+0)157218(1+0)87][75(1+(1))157218(1+(1))87]=[75(1)157218(1)87][75(0)157218(0)87]=[75(1)218(1)][75(0)218(0)]=[75218][00]=4940=147120

CARA 2: PARSIAL

udv
3x\sqrt[7]{1+x}=(1+x)^{\frac17}
3\dfrac78(1+x)^{\frac87}
0\dfrac78\cdot\dfrac7{15}(1+x)^{\frac{15}7}=\dfrac{49}{120}(1+x)^{\frac{15}7}
103x1+x7 dx=[3x78(1+x)87349120(1+x)157]10=[218x(1+x)87147120(1+x)157]10=[218(0)(1+0)87147120(1+0)157][218(1)(1+(1))87147120(1+(1))157]=[0147120(1)157][218(0)87147120(0)157]=[147120(1)]0=147120

No.

Hasil dari \displaystyle\intop_0^1\dfrac{10(18x+6)\ dx}{\sqrt{9x^2+6x+1}}=
  1. 40
  2. 50
  3. 60
  1. 70
  2. 80
Misal u=9x^2+6x+1
du=(18x+6)\ dx

x=0\rightarrow u=9(0)^2+6(0)+1=1
x=1\rightarrow u=9(1)^2+6(1)+1=16

0110(18x+6) dx9x2+6x+1=11610 duu=11610 duu12=11610u12 du=[102u12]116=[20u]116=2016201=20(4)20(1)=8020=60

No.

\displaystyle\intop_0^3x\sqrt{1+x}\ dx= ....
Misal
u=1+x\to x=u-1
du=dx

x=0\to u=1+0=1
x=3\to u=1+3=4

03x1+x dx=14(u1)u du=14(u1)u12 du=14(u32u12) du=[25u5223u32]14=(25(4)5223(4)32)(25(1)5223(1)32)=(25(32)23(8))(25(1)23(1))=(645163)(2523)=(192158015)(6151015)=(11215)(415)=11215+415=11615

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas