Berikut ini adalah kumpulan soal mengenai integral tentu tipe HOTS. Jika ingin bertanya soal, silahkan gabung ke grup
Facebook atau
Telegram.
No. 1
\displaystyle\intop_0^{\frac{\pi}2}\sqrt{1-\sin2016x}\ dx= ....
Brilliant.org
No. 2
Misalkan fungsi
f memenuhi
x=f(x)e^{f(x)}
Nilai dari
\displaystyle\intop_0^ef(x)\ dx=
Untuk x=0,
\(\begin{aligned}
0&=f(0)e^{f(0)}\\
f(0)&=0
\end{aligned}\)
Untuk x=e,
\(\begin{aligned}
e&=f(e)e^{f(e)}\\
f(e)&=1
\end{aligned}\)
\(\begin{aligned}
\displaystyle\intop_0^ef(x)\ dx&=\displaystyle\intop_0^ef(x)\ d\left(f(x)e^{f(x)}\right)\\
&=\displaystyle\intop_0^ef(x)\left(e^{f(x)}\ d\left(f(x)\right)+f(x)e^{f(x)}\ d\left(f(x)\right)\right)\\
&=\displaystyle\intop_0^e\left(f(x)e^{f(x)}+f^2(x)e^{f(x)}\right)\ d\left(f(x)\right)\\
&=\displaystyle\intop_0^e\left(ue^u+u^2e^u\right)\ du\\
&=\left[\displaystyle\intop_0^eue^u\ du+u^2e^u-\displaystyle\intop_0^e2ue^u\ du\right]_0^e\\
&=\left[u^2e^u-\displaystyle\intop_0^eue^u\ du\right]_0^e\\
&=\left[u^2e^u-ue^u+e^u\right]_0^e\\
&=\left[f^2(x)e^{f(x)}-f(x)e^{f(x)}+e^{f(x)}\right]_0^e\\
&=\left[f^2(e)e^{f(e)}-f(e)e^{f(e)}+e^{f(e)}\right]-\left[f^2(0)e^{f(0)}-f(0)e^{f(0)}+e^{f(0)}\right]\\
&=\left[(1)^2e^1-(1)e^1+e^1\right]-\left[(0)^2e^0-(0)e^0+e^0\right]\\
&=\left[e-e+e\right]-\left[0-0+1\right]\\
&=\boxed{\boxed{e-1}}
\end{aligned}\)
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas