Berikut ini adalah kumpulan soal mengenai
Integral Tentu . Jika ingin bertanya soal, silahkan gabung ke grup
Telegram ,
Signal ,
Discord , atau
WhatsApp .
No. Hasil dari
\displaystyle\intop_{10}^{12}\dfrac{dx}{\sqrt{28x+8x\sqrt{x}}}=
{\sqrt2+\sqrt3-2+\sqrt5}
{\sqrt2+\sqrt3+2-\sqrt5}
{-\sqrt2+\sqrt3+2-\sqrt5}
{-\sqrt2+\sqrt3-2+\sqrt5}
{-\sqrt2+\sqrt3+2+\sqrt5}
Penyelesaian \begin{aligned}
\displaystyle\intop_{10}^{12}\dfrac{dx}{\sqrt{28x+8x\sqrt{x}}}&=\displaystyle\intop_{10}^{12}\dfrac{dx}{\sqrt{4x\left(7+2\sqrt{x}\right)}}\\[8pt]
&=\displaystyle\intop_{10}^{12}\dfrac{dx}{2\sqrt{x}\sqrt{7+2\sqrt{x}}}
\end{aligned}
Misal
\begin{aligned}
u&=7+2\sqrt{x}\\
du&=\dfrac2{2\sqrt{x}}\ dx\\[8pt]
du&=\dfrac1{\sqrt{x}}\ dx
\end{aligned}
\begin{aligned}
\displaystyle\intop_{10}^{12}\dfrac{dx}{2\sqrt{x}\sqrt{7+2\sqrt{x}}}&=\displaystyle\intop_{10}^{12}\dfrac{du}{2\sqrt{u}}\\
&=\displaystyle\intop_{10}^{12}\dfrac12u^{-\frac12}\ du\\
&=\left[u^{\frac12}\right]_{10}^{12}\\
&=\left[\sqrt{u}\right]_{10}^{12}\\
&=\left[\sqrt{7+2\sqrt{x}}\right]_{10}^{12}\\
&=\left(\sqrt{7+2\sqrt{12}}\right)-\left(\sqrt{7+2\sqrt{10}}\right)\\
&=\left(\sqrt{4+3+2\sqrt{4\cdot3}}\right)-\left(\sqrt{2+5+2\sqrt{2\cdot5}}\right)\\
&=\left(\sqrt4+\sqrt3\right)-\left(\sqrt2+\sqrt5\right)\\
&=2+\sqrt3-\sqrt2+\sqrt5\\
&=\boxed{\boxed{-\sqrt2+\sqrt3+2+\sqrt5}}
\end{aligned}
No. Jika
{\displaystyle\intop_{-3}^3f(x)\left(\sin x+1\right)\ dx=10} dengan
f(x) fungsi genap dan
{\displaystyle\intop_{-1}^3f(x)\ dx=7} , maka
{\displaystyle\intop_1^3f(x)\ dx=} ....
Penyelesaian \begin{aligned}
\displaystyle\intop_{-3}^3f(x)\left(\sin x+1\right)\ dx&=10\\
\displaystyle\intop_{-3}^3\left(f(x)\sin x+f(x)\right)\ dx&=10\\
\displaystyle\intop_{-3}^3f(x)\sin x\ dx+\displaystyle\intop_{-3}^3f(x)\ dx&=10
\end{aligned}
f(x) fungsi genap, \sin x fungsi ganjil, sehingga f(x)\sin x fungsi ganjil.
\displaystyle\intop_{-3}^3f(x)\sin x\ dx=0
\displaystyle\intop_{-3}^3f(x)\ dx=2\displaystyle\intop_0^3f(x)\ dx
\begin{aligned}
0+2\displaystyle\intop_0^3f(x)\ dx&=10\\
\displaystyle\intop_0^3f(x)\ dx&=5
\end{aligned}
\begin{aligned}
\displaystyle\intop_{-1}^0f(x)\ dx+\displaystyle\intop_0^3f(x)\ dx&=\displaystyle\intop_{-1}^3f(x)\ dx\\
\displaystyle\intop_{-1}^0f(x)\ dx+5&=7\\
\displaystyle\intop_{-1}^0f(x)\ dx&=2\\
\displaystyle\intop_0^1f(x)\ dx&=2
\end{aligned}
\begin{aligned}
\displaystyle\intop_0^1f(x)\ dx+\displaystyle\intop_1^3f(x)\ dx&=\displaystyle\intop_0^3f(x)\ dx\\
2+\displaystyle\intop_1^3f(x)\ dx&=5\\
\displaystyle\intop_1^3f(x)\ dx&=\boxed{\boxed{3}}
\end{aligned}
No.
Jika nilai
\displaystyle\intop_1^2f( x) dx= 4 , maka nilai
\displaystyle\intop^1_0x\ f\left(x^2+1\right) dx adalah
Alternatif Penyelesaian
Misal u=x^2+1
\(\eqalign{
du&=2x\ dx\\
x\ dx&=\dfrac12du
}\)
{x=0\to u=0^2+1=1}
{x=1\to u=1^2+1=2}
\(\eqalign{
\displaystyle\intop^2_0x\ f\left(x^2+1\right) dx&=\displaystyle\intop^2_1\ f\left(u\right) du\\
&=\boxed{\boxed{4}}
}\)
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas