Exercise Zone : Limit

Berikut ini adalah kumpulan soal dan pembahasan mengenai limit tipe standar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

Tipe:


No. 1

\displaystyle\lim_{x\to3}\dfrac{3-\sqrt{2x+3}}{x-3}= ....
CARA 1
\begin{aligned}
\displaystyle\lim_{x\to3}\dfrac{3-\sqrt{2x+3}}{x-3}&=\displaystyle\lim_{x\to3}\dfrac{3-\sqrt{2x+3}}{x-3}\cdot\dfrac{3+\sqrt{2x+3}}{3+\sqrt{2x+3}}\\[9pt]
&=\displaystyle\lim_{x\to3}\dfrac{9-(2x+3)}{(x-3)\left(3+\sqrt{2x+3}\right)}\\[9pt]
&=\displaystyle\lim_{x\to3}\dfrac{9-2x-3}{(x-3)\left(3+\sqrt{2x+3}\right)}\\[9pt]
&=\displaystyle\lim_{x\to3}\dfrac{6-2x}{(x-3)\left(3+\sqrt{2x+3}\right)}\\[9pt]
&=\displaystyle\lim_{x\to3}\dfrac{-2(x-3)}{(x-3)\left(3+\sqrt{2x+3}\right)}\\[9pt]
&=\displaystyle\lim_{x\to3}\dfrac{-2}{3+\sqrt{2x+3}}\\[9pt]
&=\dfrac{-2}{3+\sqrt{2(3)+3}}\\[9pt]
&=\dfrac{-2}{3+\sqrt{6+3}}\\[9pt]
&=\dfrac{-2}{3+\sqrt9}\\[9pt]
&=\dfrac{-2}{3+3}\\[9pt]
&=\dfrac{-2}6\\[9pt]
&=\boxed{\boxed{-\dfrac13}}
\end{aligned}

CARA 2
\begin{aligned}
\displaystyle\lim_{x\to3}\dfrac{3-\sqrt{2x+3}}{x-3}&=\displaystyle\lim_{x\to3}\dfrac{0-\dfrac2{2\sqrt{2x+3}}}{1-0}\\[9pt]
&=\displaystyle\lim_{x\to3}\left(-\dfrac1{\sqrt{2x+3}}\right)\\[9pt]
&=-\dfrac1{\sqrt{2(3)+3}}\\[9pt]
&=-\dfrac1{\sqrt{6+3}}\\[9pt]
&=-\dfrac1{\sqrt9}\\[9pt]
&=\boxed{\boxed{-\dfrac13}}
\end{aligned}

No. 2

\displaystyle\lim_{x\to3}\dfrac{\left(\sqrt{x-1}-\sqrt{5-x}\right)\left(\sqrt{4x-3}-1\right)}{x^2-9}=....
  1. -\dfrac16\sqrt2
  2. -\dfrac14\sqrt2
  3. -\dfrac12\sqrt2
  1. \dfrac16\sqrt2
  2. \dfrac12\sqrt2
\begin{aligned}
\displaystyle\lim_{x\to3}\dfrac{\left(\sqrt{x-1}-\sqrt{5-x}\right)\left(\sqrt{4x-3}-1\right)}{x^2-9}&=\displaystyle\lim_{x\to3}\dfrac{\left(\sqrt{x-1}-\sqrt{5-x}\right)\left(\sqrt{4x-3}-1\right)}{x^2-9}\cdot\dfrac{\sqrt{x-1}+\sqrt{5-x}}{\sqrt{x-1}+\sqrt{5-x}}\\[9pt]
&=\displaystyle\lim_{x\to3}\dfrac{\left((x-1)-(5-x)\right)\left(\sqrt{4x-3}-1\right)}{\left(x^2-9\right)\left(\sqrt{x-1}+\sqrt{5-x}\right)}\\[9pt]
&=\displaystyle\lim_{x\to3}\dfrac{(x-1-5+x)\left(\sqrt{4x-3}-1\right)}{\left(x^2-9\right)\left(\sqrt{x-1}+\sqrt{5-x}\right)}\\[9pt]
&=\displaystyle\lim_{x\to3}\dfrac{(2x-6)\left(\sqrt{4x-3}-1\right)}{\left(x^2-9\right)\left(\sqrt{x-1}+\sqrt{5-x}\right)}\\[9pt]
&=\displaystyle\lim_{x\to3}\dfrac{2(x-3)\left(\sqrt{4x-3}-1\right)}{(x+3)(x-3)\left(\sqrt{x-1}+\sqrt{5-x}\right)}\\[9pt]
&=\displaystyle\lim_{x\to3}\dfrac{2\left(\sqrt{4x-3}-1\right)}{(x+3)\left(\sqrt{x-1}+\sqrt{5-x}\right)}\\[9pt]
&=\dfrac{2\left(\sqrt{4(3)-3}-1\right)}{(3+3)\left(\sqrt{3-1}+\sqrt{5-3}\right)}\\[9pt]
&=\dfrac{2\left(\sqrt9-1\right)}{(3+3)\left(\sqrt2+\sqrt2\right)}\\[9pt]
&=\dfrac{2(3-1)}{(6)\left(2\sqrt2\right)}\\[9pt]
&=\dfrac{2}{6\left(\sqrt2\right)}\\[9pt]
&=\dfrac1{3\sqrt2}\cdot\dfrac{\sqrt2}{\sqrt2}\\[9pt]
&=\dfrac1{3\cdot2}\sqrt2\\[9pt]
&=\boxed{\boxed{\dfrac16\sqrt2}}
\end{aligned}

No. 3

\displaystyle\lim_{x\to2}\left(\dfrac6{x^2-x-2}-\dfrac2{x-2}\right)= ....
\begin{aligned}
\displaystyle\lim_{x\to2}\left(\dfrac6{x^2-x-2}-\dfrac2{x-2}\right)&=\displaystyle\lim_{x\to2}\left(\dfrac6{(x-2)(x+1)}-\dfrac2{x-2}\right)\\[8pt]
&=\displaystyle\lim_{x\to2}\dfrac{6-2(x+1)}{(x-2)(x+1)}\\[8pt]
&=\displaystyle\lim_{x\to2}\dfrac{6-2x-2}{(x-2)(x+1)}\\[8pt]
&=\displaystyle\lim_{x\to2}\dfrac{-2x+4}{(x-2)(x+1)}\\[8pt]
&=\displaystyle\lim_{x\to2}\dfrac{-2\cancel{(x-2)}}{\cancel{(x-2)}(x+1)}\\[8pt]
&=\displaystyle\lim_{x\to2}\dfrac{-2}{x+1}\\[8pt]
&=\dfrac{-2}{2+1}\\[8pt]
&=-\dfrac23
\end{aligned}

No. 4

\displaystyle\lim_{x\to-2}\dfrac{x^3-x^2-2x+8}{x^3+8}= ....
Ganesha Operation

CARA 1 : PEMFAKTORAN

\begin{aligned}
\displaystyle\lim_{x\to-2}\dfrac{x^3-x^2-2x+8}{x^3+8}&=\displaystyle\lim_{x\to-2}\dfrac{(x+2)\left(x^2-3x+4\right)}{(x+2)\left(x^2-2x+4\right)}\\[8pt]
&=\displaystyle\lim_{x\to-2}\dfrac{x^2-3x+4}{x^2-2x+4}\\[8pt]
&=\dfrac{(-2)^2-3(-2)+4}{(-2)^2-2(-2)+4}\\[8pt]
&=\dfrac{4+6+4}{4+4+4}\\[8pt]
&=\dfrac{14}{12}\\[8pt]
&=\boxed{\boxed{\dfrac76}}
\end{aligned}


CARA 2 : L'HOPITAL

\begin{aligned}
\displaystyle\lim_{x\to-2}\dfrac{x^3-x^2-2x+8}{x^3+8}&=\displaystyle\lim_{x\to-2}\dfrac{3x^2-2x-2}{3x^2}\\[8pt]
&=\dfrac{3(-2)^2-2(-2)-2}{3(-2)^2}\\[8pt]
&=\dfrac{12+4-2}{12}\\[8pt]
&=\dfrac{14}{12}\\[8pt]
&=\boxed{\boxed{\dfrac76}}
\end{aligned}

No. 5

Diketahui fungsi g kontinu di x=2 dan \displaystyle\lim_{x\to2}g(x)=4. Nilai \displaystyle\lim_{x\to2}\left(g(x)\dfrac{x-2}{\sqrt{x}-\sqrt2}\right) adalah ....
Ganesha Operation
\begin{aligned}
\displaystyle\lim_{x\to2}\left(g(x)\dfrac{x-2}{\sqrt{x}-\sqrt2}\right)&=\displaystyle\lim_{x\to2}\left(g(x)\dfrac{x-2}{\sqrt{x}-\sqrt2}\cdot\dfrac{\sqrt{x}+\sqrt2}{\sqrt{x}+\sqrt2}\right)\\[8pt]
&=\displaystyle\lim_{x\to2}\left(g(x)\dfrac{(x-2)\left(\sqrt{x}+\sqrt2\right)}{x-2}\right)\\[8pt]
&=\displaystyle\lim_{x\to2}\left(g(x)\left(\sqrt{x}+\sqrt2\right)\right)\\
&=4\left(\sqrt2+\sqrt2\right)\\
&=4\left(2\sqrt2\right)\\
&=\boxed{\boxed{8\sqrt2}}
\end{aligned}

No. 5

Tentukan nilai dari \displaystyle\lim_{x\to5}\dfrac{x^2-25}{\sqrt{x^2+24}-7}!
Ganesha Operation

CARA 1 : KALIKAN DENGAN SEKAWAN

\begin{aligned}
\displaystyle\lim_{x\to5}\dfrac{x^2-25}{\sqrt{x^2+24}-7}&=\displaystyle\lim_{x\to5}\dfrac{x^2-25}{\sqrt{x^2+24}-7}\cdot\dfrac{\sqrt{x^2+24}+7}{\sqrt{x^2+24}+7}\\[9pt]
&=\displaystyle\lim_{x\to5}\dfrac{\left(x^2-25\right)\left(\sqrt{x^2+24}+7\right)}{x^2+24-49}\\[9pt]
&=\displaystyle\lim_{x\to5}\dfrac{\left(x^2-25\right)\left(\sqrt{x^2+24}+7\right)}{x^2-25}\\[9pt]
&=\displaystyle\lim_{x\to5}\left(\sqrt{x^2+24}+7\right)\\
&=\sqrt{5^2+24}+7\\
&=\sqrt{25+24}+7\\
&=\sqrt{49}+7\\
&=7+7\\
&=\boxed{\boxed{14}}
\end{aligned}

CARA 2 : L'HOPITAL

\begin{aligned}
\displaystyle\lim_{x\to5}\dfrac{x^2-25}{\sqrt{x^2+24}-7}&=\displaystyle\lim_{x\to5}\dfrac{2x}{\dfrac{2x}{2\sqrt{x^2+24}}}\\[9pt]
&=\displaystyle\lim_{x\to5}2\sqrt{x^2+24}\\
&=2\sqrt{5^2+24}\\
&=2\sqrt{25+24}\\
&=2\sqrt{49}\\
&=2(7)\\
&=\boxed{\boxed{14}}
\end{aligned}

No. 6

Tentukan nilai dari \displaystyle\lim_{x\to2}\dfrac{x^3+2x^2-4x-8}{x^3-8}!
Ganesha Operation

CARA 1 : PEMFAKTORAN

212-4-8
288
1440
2100-8
248
1240
\begin{aligned}
\displaystyle\lim_{x\to2}\dfrac{x^3+2x^2-4x-8}{x^3-8}&=\displaystyle\lim_{x\to2}\dfrac{\cancel{(x-2)}\left(x^2+4x+4\right)}{\cancel{(x-2)}\left(x^2+2x+4\right)}\\[9pt]
&=\dfrac{2^2+4(2)+4}{2^2+2(2)+4}\\[9pt]
&=\dfrac{4+8+4}{4+4+4}\\[9pt]
&=\dfrac{16}{12}\\[9pt]
&=\boxed{\boxed{\dfrac43}}
\end{aligned}

CARA 2 : L'HOPITAL

\begin{aligned}
\displaystyle\lim_{x\to2}\dfrac{x^3+2x^2-4x-8}{x^3-8}&=\displaystyle\lim_{x\to2}\dfrac{3x^2+4x-4}{3x^2}\\[9pt]
&=\dfrac{3(2)^2+4(2)-4}{3(2)^2}\\[9pt]
&=\dfrac{3(4)+8-4}{3(4)}\\[9pt]
&=\dfrac{12+4}{12}\\[9pt]
&=\dfrac{16}{12}\\[9pt]
&=\boxed{\boxed{\dfrac43}}
\end{aligned}

No. 7

Jika f(x)=\cos\left(\dfrac12x\right), maka \displaystyle\lim_{h\to0}\dfrac{f\left(x+\dfrac{h}2\right)-2f(x)+f\left(x-\dfrac{h}2\right)}{h^2}= ....
  1. \dfrac12\sin2x
  2. -\dfrac1{16}\cos\dfrac12x
  3. -\dfrac1{16}\sin\dfrac12x
  1. \dfrac1{16}\cos2x
  2. -\dfrac1{16}\sin2x

CARA 1

\begin{aligned}
\displaystyle\lim_{h\to0}\dfrac{f\left(x+\dfrac{h}2\right)-2f(x)+f\left(x-\dfrac{h}2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{\cos\dfrac12\left(x+\dfrac{h}2\right)-2\cos\dfrac12x+\cos\dfrac12\left(x-\dfrac{h}2\right)}{h^2}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{\cos\left(\dfrac12x+\dfrac{h}4\right)-2\cos\dfrac12x+\cos\left(\dfrac12x-\dfrac{h}4\right)}{h^2}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{\cos\dfrac12x\cos\dfrac{h}4-\sin\dfrac12x\sin\dfrac{h}4-2\cos\dfrac12x+\cos\dfrac12x\cos\dfrac{h}4+\sin\dfrac12x\sin\dfrac{h}4}{h^2}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{2\cos\dfrac12x\cos\dfrac{h}4-2\cos\dfrac12x+\cos\dfrac12x\cos\dfrac{h}4}{h^2}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{2\cos\dfrac12x\left(\cos\dfrac{h}4-1\right)}{h^2}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{2\cos\dfrac12x\left(1-2\sin^2\dfrac{h}8-1\right)}{h^2}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{-4\cos\dfrac12x\sin^2\dfrac{h}8}{h^2}\\[8pt]
&=\displaystyle\lim_{h\to0}\left(-4\cos\dfrac12x\right)\cdot\dfrac{\sin\dfrac{h}8}h\cdot\dfrac{\sin\dfrac{h}8}h\\[8pt]
&=-4\cos\dfrac12x\cdot\dfrac18\cdot\dfrac18\\
&=\boxed{\boxed{-\dfrac1{16}\cos\dfrac12x}}
\end{aligned}


CARA 2 : L'HOPITAL

\begin{aligned}
f'(x)&=-\dfrac12\sin\dfrac12x\\[8pt]
f''(x)&=-\dfrac14\cos\dfrac12x
\end{aligned}


\begin{aligned}
\displaystyle\lim_{h\to0}\dfrac{f\left(x+\dfrac{h}2\right)-2f(x)+f\left(x-\dfrac{h}2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{\dfrac12f'\left(x+\dfrac{h}2\right)-0+\left(-\dfrac12\right)f'\left(x-\dfrac{h}2\right)}{2h}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{\dfrac12f'\left(x+\dfrac{h}2\right)-\dfrac12f'\left(x-\dfrac{h}2\right)}{2h}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{\dfrac14f''\left(x+\dfrac{h}2\right)+\dfrac14f''\left(x-\dfrac{h}2\right)}2\\[8pt]
&=\dfrac{\dfrac14f''\left(x+\dfrac02\right)+\dfrac14f''\left(x-\dfrac02\right)}2\\[8pt]
&=\dfrac{\dfrac14f''\left(x\right)+\dfrac14f''\left(x\right)}2\\[8pt]
&=\dfrac{\dfrac12f''\left(x\right)}2\\[8pt]
&=\dfrac14f''\left(x\right)\\[8pt]
&=\dfrac14\left(-\dfrac14\cos\dfrac12x\right)\\
&=\boxed{\boxed{-\dfrac1{16}\cos\dfrac12x}}
\end{aligned}

No. 8

f(x)=x^2+2x
\displaystyle\lim_{h\to0}\dfrac{f(x-2h)-f(x)}{4h}=
\begin{aligned}
\displaystyle\lim_{h\to0}\dfrac{f(x-2h)-f(x)}{4h}&=\displaystyle\lim_{h\to0}\dfrac{(x-2h)^2+2(x-2h)-\left(x^2+2x\right)}{4h}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{x^2-4xh+4h^2+2x-4h-x^2-2x}{4h}\\[8pt]
&=\displaystyle\lim_{h\to0}\dfrac{-4xh+4h^2+-4h}{4h}\\[8pt]
&=\displaystyle\lim_{h\to0}(-x+h+-1)\\
&=-x+0-1\\
&=-x-1
\end{aligned}

No. 9

Jika f(x)=\dfrac{x-\sqrt{x}}{x+\sqrt{x}}, maka \displaystyle\lim_{x\to0}f(x)=
  1. 0
  2. -\dfrac12
  3. -1
  1. -2
  2. \infty

CARA BIASA : KALI SEKAWAN

\begin{aligned}
\displaystyle\lim_{x\to0}f(x)&=\displaystyle\lim_{x\to0}\dfrac{x-\sqrt{x}}{x+\sqrt{x}}\cdot\dfrac{x-\sqrt{x}}{x-\sqrt{x}}\\[8pt]
&=\displaystyle\lim_{x\to0}\dfrac{x^2-2x\sqrt{x}+x}{x^2-x}\\[8pt]
&=\displaystyle\lim_{x\to0}\dfrac{x(x-2\sqrt{x}+1)}{x(x-1)}\\[8pt]
&=\displaystyle\lim_{x\to0}\dfrac{x-2\sqrt{x}+1}{x-1}\\[8pt]
&=\dfrac{0-2\sqrt{0}+1}{0-1}\\[8pt]
&=\dfrac1{-1}\\
&=\boxed{\boxed{-1}}
\end{aligned}

CARA L'HOPITAL

\begin{aligned}
\displaystyle\lim_{x\to0}f(x)&=\displaystyle\lim_{x\to0}\dfrac{x-\sqrt{x}}{x+\sqrt{x}}\\[8pt]
&=\displaystyle\lim_{x\to0}\dfrac{1-\dfrac1{2\sqrt{x}}}{1+\dfrac1{2\sqrt{x}}}\cdot\dfrac{2\sqrt{x}}{2\sqrt{x}}\\[8pt]
&=\displaystyle\lim_{x\to0}\dfrac{2\sqrt{x}-1}{2\sqrt{x}+1}\\[8pt]
&=\dfrac{2\sqrt{0}-1}{2\sqrt{0}+1}\\[8pt]
&=\dfrac{-1}1\\
&=\boxed{\boxed{-1}}
\end{aligned}

No. 10

\displaystyle\lim_{x\to2}(3x+2)= ....
  1. 4
  2. 5
  3. 6
  1. 7
  2. 8
\begin{aligned}
\displaystyle\lim_{x\to2}(3x+2)&=3(2)+2\\
&=6+2\\
&=\boxed{\boxed{8}}
\end{aligned}

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas