Berikut ini adalah kumpulan soal dan pembahasan mengenai limit tingkat SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
No. 1 Diketahui
f(x)=x^2+ax+b dengan
f(3)=1 . Jika
\displaystyle\lim_{x\to3}\dfrac{x-3}{f(x)-f(3)}=\dfrac12 maka
a+b= ....
f'(x)=2x+a
\begin{aligned}
\displaystyle\lim_{x\to3}\dfrac{x-3}{f(x)-f(3)}&=\dfrac12\\
\displaystyle\lim_{x\to3}\dfrac1{f'(x)}&=\dfrac12\\
\dfrac1{f'(3)}&=\dfrac12\\
\dfrac1{2(3)+a}&=\dfrac12\\
\dfrac1{6+a}&=\dfrac12\\
6+a&=2\\
a&=-4
\end{aligned}
\begin{aligned}
f(x)&=x^2+(-4)x+b\\
&=x^2-4x+b
\end{aligned}
\begin{aligned}
f(3)&=1\\
3^2-4(3)+b&=1\\
9-12+b&=1\\
-3+b&=1\\
b&=4
\end{aligned}
\begin{aligned}
a+b&=-4+4\\
&=0
\end{aligned}
No. 2 Diketahui suku banyak
{f(x)=ax^2-(a+b)x-3} habis dibagi
{x+1} . Jika
\displaystyle\lim_{x\to-1}\dfrac{f(x)}{x^2-x-2}=2 , maka nilai
a+b adalah ....
habis dibagi x+1 artinya f(-1)=0
\begin{aligned}
f(-1)&=0\\
a(-1)^2-(a+b)(-1)-3&=0\\
a+a+b-3&=0\\
2a+b&=3
\end{aligned}
f'(x)=2ax-a-b
\begin{aligned}
\displaystyle\lim_{x\to-1}\dfrac{f(x)}{x^2-x-2}&=2\\
\displaystyle\lim_{x\to-1}\dfrac{f'(x)}{2x-1}&=2\\
\dfrac{f'(-1)}{2(-1)-1}&=2\\
\dfrac{2a(-1)-a-b}{-3}&=2\\
-2a-a-b&=-6\\
3a+b&=6
\end{aligned}
\begin{aligned}
3a+b&=6\\
2a+b&=3\qquad-\\\hline
a&=3
\end{aligned}
\begin{aligned}
2a+b&=3\\
2(3)+b&=3\\
b&=-3
\end{aligned}
\begin{aligned}
a+b&=3+(-3)\\
&=0
\end{aligned}
No. 3 \displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x-x^3}\right) = -\dfrac32
-\dfrac23
\dfrac23
UM UGM '05 Kode 621
\begin{aligned}
\displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x-x^3}\right)&=\displaystyle\lim_{x\to1}\left(\dfrac1{1-x}-\dfrac2{x(1+x)(1-x)}\right)\\[8pt]
&=\displaystyle\lim_{x\to1}\left(\dfrac{x(1+x)}{x(1+x)(1-x)}-\dfrac2{x(1+x)(1-x)}\right)\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{x+x^2-2}{x(1+x)(1-x)}\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{(x+2)(x-1)}{x(1+x)(1-x)}\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{-(x+2)(1-x)}{x(1+x)(1-x)}\\[8pt]
&=\dfrac{-(1+2)}{1(1+1)}\\[8pt]
&=\dfrac{-3}2\\
&=\boxed{\boxed{-\dfrac32}}
\end{aligned}
No. 12 \displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}= \sqrt3+\sqrt2
5-2\sqrt6
2\sqrt6
GRUP WHATSAPP
\begin{aligned}
\displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}&=\displaystyle\lim_{x\to5}\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x-2\sqrt{x+1}}}\cdot\dfrac{\sqrt{x+2\sqrt{x+1}}}{\sqrt{x+2\sqrt{x+1}}}\\[8pt]
&=\displaystyle\lim_{x\to5}\dfrac{x+2\sqrt{x+1}}{\sqrt{x^2-4(x+1)}}\\[8pt]
&=\dfrac{5+2\sqrt{5+1}}{\sqrt{5^2-4(5+1)}}\\[8pt]
&=\dfrac{5+2\sqrt6}{\sqrt{25-24}}\\[8pt]
&=\dfrac{5+2\sqrt6}{\sqrt1}\\
&=\boxed{\boxed{5+2\sqrt6}}
\end{aligned}
13 Jika
f(x)=ax+b dan
\displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot f(x)}{x-4}\right)=24 , maka nilai
f(5)=
CARA 1 \begin{aligned}
3(4)\cdot f(4)&=0\\
12(4a+b)&=0\\
4a+b&=0
\end{aligned}
Gunakan aturan L'hopital
\begin{aligned}
\displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot f(x)}{x-4}\right)&=24\\[8pt]
\displaystyle\lim_{x\to4}\left(\dfrac{3f(x)+3x\cdot f'(x)}1\right)&=24\\[8pt]
3f(4)+3(4)f'(4)&=24\\
3(4a+b)+12(a)&=24\\
3(0)+12a&=24\\
12a&=24\\
a&=2
\end{aligned}
\begin{aligned}
4a+b&=0\\
4(2)+b&=0\\
8+b&=0\\
b&=-8
\end{aligned}
f(x)=2x-8
\begin{aligned}
f(5)&=2(5)-8\\
&=10-8\\
&=\boxed{\boxed{2}}
\end{aligned}
CARA 2 f(x) adalah fungsi linier, dan x-4 harus menjadi salah satu faktornya, sehingga bisa kita tulis f(x)=p(x-4)
\begin{aligned}
\displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot f(x)}{x-4}\right)&=24\\[8pt]
\displaystyle\lim_{x\to4}\left(\dfrac{3x\cdot p(x-4)}{x-4}\right)&=24\\[8pt]
\displaystyle\lim_{x\to4}3xp&=24\\
3(4)p&=24\\
12p&=24\\
p&=2
\end{aligned}
f(x)=2(x-4)
\begin{aligned}
f(5)&=2(5-4)\\
&=2(1)\\
&=\boxed{\boxed{2}}
\end{aligned}
No. 6 Nilai
\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)=11 dan
\displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)=17 , maka nilai
\displaystyle\lim_{x\to a}\left(f(x)\cdot g(x)\right)=
\begin{aligned}
\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&=11\\
\displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)&=17\qquad&\color{red}{+}\\\hline
\displaystyle\lim_{x\to a}7f(x)&=28\\
\displaystyle\lim_{x\to a}f(x)&=4
\end{aligned}
\begin{aligned}
\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&=11\\
5(4)-\displaystyle\lim_{x\to a}3g(x)&=11\\
20-\displaystyle\lim_{x\to a}3g(x)&=11\\
-\displaystyle\lim_{x\to a}3g(x)&=-9\\
\displaystyle\lim_{x\to a}3g(x)&=9\\
\displaystyle\lim_{x\to a}g(x)&=3
\end{aligned}
\begin{aligned}
\displaystyle\lim_{x\to a}\left(f(x)\cdot g(x)\right)&=4\cdot3\\
&=\boxed{\boxed{12}}
\end{aligned}
No. 7 Jika
\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2}{x-1}=M maka
\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}= ....
2M-1
\dfrac12(M-1)
\dfrac14(M-2)
CARA 1 \begin{aligned}
\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2}{x-1}&=M\\[8pt]
\displaystyle\lim_{x\to1}\dfrac{\dfrac{4ax^3}{2\sqrt{ax^4+b}}}1&=M\\[8pt]
\displaystyle\lim_{x\to1}\dfrac{4ax^3}{2\sqrt{ax^4+b}}&=M\qquad\color{red}{\text{L'hopital}}
\end{aligned}
\begin{aligned}
\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}&=\displaystyle\lim_{x\to1}\dfrac{\dfrac{4ax^3}{2\sqrt{ax^4+b}}-2}{2x+2}\qquad\color{red}{\text{L'hopital}}\\[8pt]
&=\dfrac{M-2}{2(1)+2}\\[8pt]
&=\dfrac{M-2}4\\
&=\boxed{\boxed{\dfrac14(M-2)}}
\end{aligned}
CARA 2 \begin{aligned}
\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2x}{x^2+2x-3}&=\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2-2x+2}{(x-1)(x+3)}\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax^4+b}-2-2(x-1)}{(x-1)(x+3)}\\[8pt]
&=\displaystyle\lim_{x\to1}\dfrac{\dfrac{\sqrt{ax^4+b}-2}{x-1}-2}{x+3}\\[8pt]
&=\dfrac{M-2}{1+3}\\[8pt]
&=\dfrac{M-2}4\\
&=\boxed{\boxed{\dfrac14(M-2)}}
\end{aligned} No. 8 Diketahui suku banyak
g(x)=ax^2+(a-b)x+1 habis dibagi
x+1 . Jika
\displaystyle\lim_{x\to-1}\dfrac{g(x)}{x^2+3x+2}=4 , maka nilai
2a-b adalah
g(x)=ax^2+(a-b)x+1 habis dibagi x+1 berarti
\begin{aligned}
g(-1)&=0\\
a(-1)^2+(a-b)(-1)+1&=0\\
a-a+b+1&=0\\
b&=-1
\end{aligned}
\begin{aligned}
g(x)&=ax^2+(a-b)x+1\\
&=ax^2+(a-(-1))x+1\\
&=ax^2+(a+1)x+1
\end{aligned}
\begin{aligned}
\displaystyle\lim_{x\to-1}\dfrac{ax^2+(a+1)x+1}{x^2+3x+2}&=4\\[8pt]
\displaystyle\lim_{x\to-1}\dfrac{2ax+a+1}{2x+3}&=4\\[8pt]
\dfrac{2a(-1)+a+1}{2(-1)+3}&=4\\[8pt]
\dfrac{-2a+a+1}{1}&=4\\[8pt]
-a+1&=4\\
a&=-3
\end{aligned}
\begin{aligned}
2a-b&=2(-3)-(-1)\\
&=-6+1\\
&=-5
\end{aligned}
No. 9 Nilai
\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)= 11 dan
\displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)= 17 , maka nilai
\displaystyle\lim_{x\to a}\left(4f(x)\right)=
\begin{aligned}
\displaystyle\lim_{x\to a}\left(5f(x)-3g(x)\right)&= 11\\
5\displaystyle\lim_{x\to a}f(x)-3\displaystyle\lim_{x\to a}g(x)&=11
\end{aligned}
\begin{aligned}
\displaystyle\lim_{x\to a}\left(2f(x)+3g(x)\right)&= 17\\
2\displaystyle\lim_{x\to a}f(x)+3\displaystyle\lim_{x\to a}g(x)&=17
\end{aligned}
\begin{aligned}
5\displaystyle\lim_{x\to a}f(x)-3\displaystyle\lim_{x\to a}g(x)&=11\\
2\displaystyle\lim_{x\to a}f(x)+3\displaystyle\lim_{x\to a}g(x)&=17\qquad\color{red}{+}\\\hline
7\displaystyle\lim_{x\to a}f(x)&=28\\
\displaystyle\lim_{x\to a}f(x)&=4\\
\displaystyle\lim_{x\to a}\left(4f(x)\right)&=\boxed{\boxed{16}}
\end{aligned}
No. 10 Diketahui
{\displaystyle\lim_{x\to3}\dfrac{f(x)\cdot g(x)-5g(x)+f(x)-5}{\left(f(x)-5\right)(x-3)}=0} . Nilai
g'(3) adalah
\begin{aligned}
\displaystyle\lim_{x\to3}\dfrac{f(x)\cdot g(x)-5g(x)+f(x)-5}{\left(f(x)-5\right)(x-3)}&=0\\[8pt]
\displaystyle\lim_{x\to3}\dfrac{\left(f(x)-5\right)\left(g(x)+1\right)}{\left(f(x)-5\right)(x-3)}&=0\\[8pt]
\displaystyle\lim_{x\to3}\dfrac{g(x)+1}{x-3}&=0\\[8pt]
\displaystyle\lim_{x\to3}\dfrac{g'(x)}1&=0&\qquad\color{red}{\text{l'hopital}}\\[8pt]
\displaystyle\lim_{x\to3}g'(x)&=0\\
g'(3)&=0
\end{aligned}
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas