Exercise Zone : Limit [2]

Berikut ini adalah kumpulan soal dan pembahasan mengenai limit tipe standar. Jika ingin bertanya soal, silahkan gabung ke grup Facebook atau Telegram.

Tipe:


No. 11

Nilai \displaystyle\lim_{x\to0}\dfrac{2x}{x+2}= ...
  1. 0
  2. 1
  3. 3
  1. 9
  2. \infty
\(\begin{aligned} \displaystyle\lim_{x\to0}\dfrac{2x}{x+2}&=\dfrac{2(0)}{0+2}\\[8pt] &=\dfrac02\\ &=\boxed{\boxed{0}} \end{aligned}\)

No. 12

Jika f(x)=\dfrac{3-\sqrt{2x+9}}x, maka \displaystyle\lim_{x\to0}f(x)=
  1. -\dfrac13
  2. 6
  3. \dfrac23
  1. 12
  2. \dfrac12

CARA 1 : KALI SEKAWAN

\(\begin{aligned} \displaystyle\lim_{x\to0}f(x)&=\displaystyle\lim_{x\to0}\dfrac{3-\sqrt{2x+9}}x\cdot\dfrac{3+\sqrt{2x+9}}{3+\sqrt{2x+9}}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{9-(2x+9)}{x(3+\sqrt{2x+9})}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{9-2x-9}{x(3+\sqrt{2x+9})}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{-2x}{x(3+\sqrt{2x+9})}\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{-2}{3+\sqrt{2x+9}}\\[8pt] &=\dfrac{-2}{3+\sqrt{2(0)+9}}\\[8pt] &=\dfrac{-2}{3+\sqrt{0+9}}\\[8pt] &=\dfrac{-2}{3+\sqrt9}\\[8pt] &=\dfrac{-2}{3+3}\\[8pt] &=\dfrac{-2}6\\ &=\boxed{\boxed{-\dfrac13}} \end{aligned}\)

CARA 2 : L'HOPITAL

\(\begin{aligned} \displaystyle\lim_{x\to0}f(x)&=\displaystyle\lim_{x\to0}\dfrac{3-\sqrt{2x+9}}x\\[8pt] &=\displaystyle\lim_{x\to0}\dfrac{0-\dfrac2{2\sqrt{2x+9}}}1\\[8pt] &=\displaystyle\lim_{x\to0}-\dfrac1{\sqrt{2x+9}}\\[8pt] &=-\dfrac1{\sqrt{2(0)+9}}\\[8pt] &=-\dfrac1{\sqrt{0+9}}\\[8pt] &=-\dfrac1{\sqrt9}\\ &=\boxed{\boxed{-\dfrac13}} \end{aligned}\)

No. 13

Nilai dari \displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}} adalah
  1. 1
  2. 2
  3. 3
  1. 4
  2. 5

CARA 1

\(\begin{aligned} \displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}}&=\displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}}\color{red}{\cdot\dfrac{\sqrt{2x-1}+\sqrt{x}}{\sqrt{2x-1}+\sqrt{x}}}\\[8pt] &=\displaystyle\lim_{x\to1}\dfrac{(2x-2)\left(\sqrt{2x-1}+\sqrt{x}\right)}{2x-1-x}\\[8pt] &=\displaystyle\lim_{x\to1}\dfrac{2\cancel{(x-1)}\left(\sqrt{2x-1}+\sqrt{x}\right)}{\cancel{x-1}}\\[8pt] &=\displaystyle\lim_{x\to1}2\left(\sqrt{2x-1}+\sqrt{x}\right)\\ &=2\left(\sqrt{2(1)-1}+\sqrt{1}\right)\\ &=2\left(\sqrt{2-1}+1\right)\\ &=2\left(\sqrt1+1\right)\\ &=2\left(1+1\right)\\ &=2\left(2\right)\\ &=\boxed{\boxed{4}} \end{aligned}\)

CARA 2

\(\begin{aligned} \displaystyle\lim_{x\to1}\dfrac{2x-2}{\sqrt{2x-1}-\sqrt{x}}&=\displaystyle\lim_{x\to1}\dfrac2{\dfrac2{2\sqrt{2x-1}}-\dfrac1{2\sqrt{x}}}\\[21pt] &=\dfrac2{\dfrac2{2\sqrt{2(1)-1}}-\dfrac1{2\sqrt1}}\\[21pt] &=\dfrac2{\dfrac2{2\sqrt{2-1}}-\dfrac1{2(1)}}\\[21pt] &=\dfrac2{\dfrac2{2\sqrt1}-\dfrac12}\\[21pt] &=\dfrac2{\dfrac2{2(1)}-\dfrac12}\\[21pt] &=\dfrac2{\dfrac22-\dfrac12}\\[21pt] &=\dfrac2{\dfrac12}\\ &=\boxed{\boxed{4}} \end{aligned}\)

No. 14

Diektahui {f(x)=\sqrt{1+x}}. Nilai \displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-2h^2\right)}{h^2} adalah
  1. 0
  2. \dfrac67
  3. \dfrac98
  1. \dfrac23
  2. \dfrac54

CARA 1

\(\begin{aligned} \displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-2h^2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{\sqrt{1+3+2h^2}-\sqrt{1+3-2h^2}}{h^2}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{\sqrt{4+2h^2}-\sqrt{4-2h^2}}{h^2}\color{red}{\cdot\dfrac{\sqrt{4+2h^2}+\sqrt{4-2h^2}}{\sqrt{4+2h^2}+\sqrt{4-2h^2}}}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{\left(4+2h^2\right)-\left(4-2h^2\right)}{h^2\left(\sqrt{4+2h^2}+\sqrt{4-2h^2}\right)}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{4+2h^2-4+2h^2}{h^2\left(\sqrt{4+2h^2}+\sqrt{4-2h^2}\right)}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac{4h^2}{h^2\left(\sqrt{4+2h^2}+\sqrt{4-2h^2}\right)}\\[8pt] &=\displaystyle\lim_{h\to0}\dfrac4{\sqrt{4+2h^2}+\sqrt{4-2h^2}}\\[8pt] &=\dfrac4{\sqrt{4+2(0)^2}+\sqrt{4-2(0)^2}}\\[8pt] &=\dfrac4{\sqrt{4+0}+\sqrt{4-0}}\\[8pt] &=\dfrac4{\sqrt4+\sqrt4}\\[8pt] &=\dfrac4{2+2}\\[8pt] &=\dfrac44\\ &=\boxed{\boxed{1}} \end{aligned}\)

CARA 2 : L'HOPITAL

\(\begin{aligned} f(x)&=\sqrt{1+x}\\ f'(x)&=\dfrac1{2\sqrt{1+x}} \end{aligned}\)

\(\begin{aligned} \displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-2h^2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{4h\ f'\left(3+2h^2\right)-(-4h)f'\left(3-2h^2\right)}{2h}\\[8pt] &=\displaystyle\lim_{h\to0}\left(2f'\left(3+2h^2\right)+2f'\left(3-2h^2\right)\right)\\ &=2f'\left(3+2(0)^2\right)+2f'\left(3-2(0)^2\right)\\ &=2f'(3)+2f'(3)\\ &=4f'(3)\\ &=4\left(\dfrac1{2\sqrt{1+3}}\right)\\[8pt] &=\dfrac4{2\sqrt4}\\[8pt] &=\dfrac4{2(2)}\\[8pt] &=\dfrac44\\ &=\boxed{\boxed{1}} \end{aligned}\)

No. 15

Nilai dari \displaystyle\lim_{x\to3}\dfrac{x^2+3x-18}{x^2-3x} adalah
  1. 3
  2. -3
  3. -2
  1. 2
  2. 0
\(\begin{aligned} \displaystyle\lim_{x\to3}\dfrac{x^2+3x-18}{x^2-3x}&=\displaystyle\lim_{x\to3}\dfrac{(x+6)\cancel{(x-3)}}{x\cancel{(x-3)}}\\[8pt] &=\displaystyle\lim_{x\to3}\dfrac{x+6}x\\[8pt] &=\dfrac{3+6}3\\[8pt] &=\dfrac93\\ &=\boxed{\boxed{3}} \end{aligned}\)

No. 16

Diketahui {\displaystyle\lim_{x\to a}\dfrac{\sqrt{x}-2}{x-4}=\dfrac14}, nilai a adalah
  1. 0
  2. -4
  3. 4
  1. -2
  2. 2
\(\begin{aligned} \displaystyle\lim_{x\to a}\dfrac{\sqrt{x}-2}{x-4}&=\dfrac14\\[8pt] \displaystyle\lim_{x\to a}\dfrac{\sqrt{x}-2}{x-4}\color{red}{\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}+2}}&=\dfrac14\\[8pt] \displaystyle\lim_{x\to a}\dfrac{\cancel{x-4}}{\cancel{(x-4)}\left(\sqrt{x}+2\right)}&=\dfrac14\\[8pt] \displaystyle\lim_{x\to a}\dfrac1{\sqrt{x}+2}&=\dfrac14\\[8pt] \dfrac1{\sqrt{a}+2}&=\dfrac14\\[8pt] \sqrt{a}+2&=4\\ \sqrt{a}&=2\\ a&=4 \end{aligned}\)

No. 17

Jika \displaystyle\lim_{\theta\to-1}f(\theta) ada dan {\dfrac{\theta^2+\theta-2}{\theta+3}\leq\dfrac{f(\theta)}{\theta+3}\leq\dfrac{\theta^2+2\theta-1}{\theta+3}}, tentukan \displaystyle\lim_{\theta\to-1}f(\theta)!
\(\begin{array}{rcccll} \dfrac{\theta^2+\theta-2}{\theta+3}&\leq&\dfrac{f(\theta)}{\theta+3}&\leq&\dfrac{\theta^2+2\theta-1}{\theta+3}\\[8pt] \displaystyle\lim_{\theta\to-1}\dfrac{\theta^2+\theta-2}{\theta+3}&\leq&\displaystyle\lim_{\theta\to-1}\dfrac{f(\theta)}{\theta+3}&\leq&\displaystyle\lim_{\theta\to-1}\dfrac{\theta^2+2\theta-1}{\theta+3}\\[8pt] \dfrac{(-1)^2+(-1)-2}{-1+3}&\leq&\dfrac{\displaystyle\lim_{\theta\to-1}f(\theta)}{-1+3}&\leq&\dfrac{(-1)^2+2(-1)-1}{-1+3}\\[8pt] \dfrac{-2}2&\leq&\dfrac{\displaystyle\lim_{\theta\to-1}f(\theta)}2&\leq&\dfrac{-2}{2}&\quad\color{red}{\times2}\\[8pt] -2&\leq&\displaystyle\lim_{\theta\to-1}f(\theta)&\leq&-2 \end{array}\)
\displaystyle\lim_{\theta\to-1}f(\theta)=-2

No. 18

Jika {\displaystyle\lim_{x\to2}\dfrac{x^2-3x+a}{x-2}=1} maka nilai a adalah ....
  1. -2
  2. -1
  3. 0
  1. 1
  2. 2
Jika {f(x)=x^2-3x+a}, maka {f(2)=0}.
\(\begin{aligned} 2^2-3(2)+a&=0\\ 4-6+a&=0\\ -2+a&=0\\ a&=\boxed{\boxed{2}} \end{aligned}\)

No. 19

{\displaystyle\lim_{x\to0}\dfrac{\sqrt{x}-x}{\sqrt{x}+x}=} ....
  1. 0
  2. \dfrac12
  3. 1
  1. 2
  2. \infty
\(\begin{aligned} \displaystyle\lim_{x\to0}\dfrac{\sqrt{x}-x}{\sqrt{x}+x}&=\displaystyle\lim_{x\to0}\dfrac{\sqrt{x}-x}{\sqrt{x}+x}\cdot{\color{red}{\dfrac{\sqrt{x}+x}{\sqrt{x}+x}}}\\[10pt] &=\displaystyle\lim_{x\to0}\dfrac{x-x^2}{x+2x\sqrt{x}+x^2}\\[10pt] &=\displaystyle\lim_{x\to0}\dfrac{x(1-x)}{x\left(1+2\sqrt{x}+x\right)}\\[10pt] &=\displaystyle\lim_{x\to0}\dfrac{1-x}{1+2\sqrt{x}+x}\\[10pt] &=\dfrac{1-0}{1+2\sqrt0+0}\\[10pt] &=\dfrac11\\ &=\boxed{\boxed{1}} \end{aligned}\)

No. 20

\displaystyle\lim_{x\to2}\dfrac{x^2+5x-14}{2x^2-x-6}=
\(\eqalign{ \displaystyle\lim_{x\to2}\dfrac{x^2+5x-14}{2x^2-x-6}&=\displaystyle\lim_{x\to2}\dfrac{(x+7)(x-2)}{(2x+3)(x-2)}\\ &=\displaystyle\lim_{x\to2}\dfrac{x+7}{2x+3}\\ &=\dfrac{2+7}{2(2)+3}\\ &=\boxed{\boxed{\dfrac97}} }\)

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas