\(\eqalign{
\cos\alpha\cdot\cos \beta &= \dfrac38\qquad&{\color{red}\times2}\\
2\cos\alpha\cdot\cos \beta &= \dfrac34\\
\cos \left(\alpha + \beta\right)+\cos \left(\alpha - \beta\right)&= \dfrac34\\
\dfrac12+\cos \left(\alpha - \beta\right)&= \dfrac34\\
\cos \left(\alpha - \beta\right)&= \dfrac34-\dfrac12\\
\cos \left(\alpha - \beta\right)&= \dfrac14
}\)
\sqrt{4^2-1^2}=\sqrt{!6-1}=\sqrt{!5}
\(\eqalign{
\tan\left(\alpha-\beta\right)&=\dfrac{\sqrt{15}}1\\
&=\boxed{\boxed{\sqrt{15}}}
}\)
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas