Berikut ini adalah kumpulan soal mengenai jumlah dan selisih trigonometri tipe Standar. Jika ingin bertanya soal, silahkan gabung ke grup
Facebook atau
Telegram .
No 1 Diketahui
\cos(x-y)=\dfrac45 dan
\sin x\sin y=\dfrac3{10} . Nilai
\tan x\tan y adalah ....
Facebook
Penyelesaian \(\begin{aligned}
\cos(x-y)&=\dfrac45\\
\cos x\cos y+\sin x\sin y&=\dfrac45\\
\cos x\cos y+\dfrac3{10}&=\dfrac45\\
\cos x\cos y&=\dfrac45-\dfrac3{10}\\
&=\dfrac5{10}
\end{aligned}\)
\(\begin{aligned}
\tan x\tan y&=\dfrac{\sin x\sin y}{\cos x\cos y}\\
&=\dfrac{\dfrac3{10}}{\dfrac5{10}}\\
&=\boxed{\boxed{\dfrac35}}
\end{aligned}\)
2 Diketahui
\tan(3A+4B)=6 dan
\tan(2A-B)=2 . Nilai dari
\tan(A+5B)= ....
Penyelesaian
\(\begin{aligned}
\tan(A+5B)&=\tan\left(3A+4B-(2A-B)\right)\\
&=\dfrac{\tan(3A+4B)-\tan(2A-B)}{1+\tan(3A+4B)\tan(2A-B)}\\[8pt]
&=\dfrac{6-2}{1+(6)(2)}\\
&=\boxed{\boxed{\dfrac4{13}}}
\end{aligned}\)
3 Jika
\sin(3x+20)=a dan
\sin(x+10)=b maka
2\sin(4x+30)\sin(2x+10)=
1-2a^2b^2
a^2-b^2
b^2-a^2
Penyelesaian \(\begin{aligned}
2\sin(4x+30)\sin(2x+10)&=\cos((4x+30)-(2x+10))-\cos((4x+30)+(2x+10))\\
&=\cos(4x+30-2x-10)-\cos(4x+30+2x+10)\\
&=\cos(2x+20)-\cos(6x+40)\\
&=\cos2(x+10)-\cos2(3x+20)\\
&=1-2\sin^2(x+10)-\left(1-2\sin^2(3x+20)\right)\\
&=1-2b^2-\left(1-2a^2\right)\\
&=1-2b^2-1+2a^2\\
&=\boxed{\boxed{2a^2-2b^2}}
\end{aligned}\)
No. 4
Jika
\cos(2x+35\degree)=p dan
\cos(x+25\degree)=q maka
\sin(3x+60\degree)\sin(x+10\degree)=
Penyelesaian \(\begin{aligned}
2\sin(3x+60\degree)\sin(x+10\degree)&=\cos\left((3x+60\degree)-(x+10\degree)\right)-\cos\left((3x+60\degree)+(x+10\degree)\right)\\
&=\cos(2x+50\degree)-\cos(4x+70\degree)\\
&=\cos2(x+25\degree)-\cos2(2x+35\degree)\\
&=2\cos^2(x+25\degree)-1-\left(2\cos^2(2x+35\degree)-1\right)\\
&=2q^2-1-\left(2p^2-1\right)\\
&=2q^2-1-2p^2+1\\
&=2q^2-2p^2\\
&=2\left(q^2-p^2\right)\\
\sin(3x+60\degree)\sin(x+10\degree)&=\boxed{\boxed{q^2-p^2}}
\end{aligned}\)
No. 5
Tentukan nilai dari
{\sin105\degree+\sin15\degree}
Alternatif Penyelesaian
\(\eqalign{
\sin105^\circ+\sin15^\circ&=2\sin\left(\dfrac{105^\circ+15^\circ}2\right)\cos\left(\dfrac{105^\circ-15^\circ}2\right)\\
&=2\sin\left(\dfrac{120^\circ}2\right)\cos\left(\dfrac{90^\circ}2\right)\\
&=2\sin60^\circ\cos45^\circ\\
&=2\left(\dfrac12\sqrt3\right)\left(\dfrac12\sqrt2\right)\\
&=\boxed{\boxed{\dfrac12\sqrt6}}
}\)
LIHAT JUGA:
Trigonometri
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas