Berikut ini adalah kumpulan soal mengenai
Limit Tak Hingga . Jika ingin bertanya soal, silahkan gabung ke grup
Telegram ,
Signal ,
Discord , atau
WhatsApp .
No. \displaystyle\lim_{x\to\infty}\dfrac{\sqrt{4x^4-5x+1}}{5-2x^2}=
Penyelesaian
CARA 1 \begin{aligned}
\displaystyle\lim_{x\to\infty}\dfrac{\sqrt{4x^4-5x+1}}{5-2x^2}&=\displaystyle\lim_{x\to\infty}\dfrac{\sqrt{\dfrac{4x^4}{\color{red}x^4}-\dfrac{5x}{\color{red}x^4}+\dfrac1{\color{red}x^4}}}{\dfrac5{\color{red}x^2}-\dfrac{2x^2}{\color{red}x^2}}\\[20pt]
&=\displaystyle\lim_{x\to\infty}\dfrac{\sqrt{4-\dfrac5{x^3}+\dfrac1{x^4}}}{\dfrac5{x^2}-2}\\[20pt]
&=\dfrac{\sqrt{4-0+0}}{0-2}\\[8pt]
&=\dfrac{\sqrt4}{-2}\\[8pt]
&=\dfrac2{-2}\\
&=\boxed{\boxed{-1}}
\end{aligned}
CARA 2 \begin{aligned}
\displaystyle\lim_{x\to\infty}\dfrac{\sqrt{4x^4-5x+1}}{5-2x^2}&=\displaystyle\lim_{x\to\infty}\dfrac{\sqrt{4x^4}}{-2x^2}\\[8pt]
&=\displaystyle\lim_{x\to\infty}\dfrac{2{\color{red}{\cancel{\color{black}x^2}}}}{-2{\color{red}{\cancel{\color{black}x^2}}}}\\
&=\boxed{\boxed{-1}}
\end{aligned}
No. Nilai dari
{\displaystyle\lim_{x\to\infty}\left(\dfrac12\sqrt{4x^2-x}-x\right)=}
-\dfrac18
-\dfrac14
-\dfrac12
Penyelesaian \begin{aligned}
\displaystyle\lim_{x\to\infty}\left(\dfrac12\sqrt{4x^2-x}-x\right)&=\displaystyle\lim_{x\to\infty}\left(\sqrt{\dfrac14\left(4x^2-x\right)}-\sqrt{x^2}\right)\\[8pt]
&=\displaystyle\lim_{x\to\infty}\left(\sqrt{x^2-\dfrac14x}-\sqrt{x^2}\right)\\[8pt]
&=\dfrac{-\dfrac14-0}{2\sqrt1}\\[8pt]
&=\dfrac{-\dfrac14}2\\
&=\boxed{\boxed{-\dfrac18}}
\end{aligned}
No. Nilai
b yang memenuhi
{\displaystyle\lim_{x\to\infty}\sqrt{4x^2+bx+5}-\sqrt{4x^2-6x}=18} adalah
Penyelesaian \begin{aligned}
\displaystyle\lim_{x\to\infty}\sqrt{4x^2+bx+5}-\sqrt{4x^2-6x}&=18\\[8pt]
\dfrac{b-(-6)}{2\sqrt4}&=18\\[8pt]
\dfrac{b+6}4&=18\\[8pt]
b+6&=72\\
b&=\boxed{\boxed{66}}
\end{aligned}
No.
Nilai dari limit fungsi
{\displaystyle\lim_{x\to\infty}\sqrt{(2x+2)(2x+4)}-2x+1} adalah
Penyelesaian \begin{aligned}
\displaystyle\lim_{x\to\infty}\sqrt{(2x+2)(2x+4)}-2x+1&=\displaystyle\lim_{x\to\infty}\sqrt{4x^2+8x+4x+8}-(2x+1)\\[8pt]
&=\displaystyle\lim_{x\to\infty}\sqrt{4x^2+12x+8}-\sqrt{(2x+1)^2}\\[8pt]
&=\displaystyle\lim_{x\to\infty}\sqrt{4x^2+12x+8}-\sqrt{4x^2+4x+1}\\[8pt]
&=\dfrac{12-4}{2\sqrt4}\\[8pt]
&=\dfrac84\\
&=\boxed{\boxed{2}}
\end{aligned}
No.
\displaystyle\lim_{x\to\infty}\left(\sqrt{(x+2)(x-3)}-x+1\right)=
Penyelesaian
\begin{aligned}
\displaystyle\lim_{x\to\infty}\left(\sqrt{(x+2)(x-3)}-x+1\right)&=\displaystyle\lim_{x\to\infty}\left(\sqrt{x^2-x-6}-(x-1)\right)\\
&=\displaystyle\lim_{x\to\infty}\left(\sqrt{x^2-x-6}-\sqrt{(x-1)^2}\right)\\
&=\displaystyle\lim_{x\to\infty}\left(\sqrt{x^2-x-6}-\sqrt{x^2-2x+1}\right)\\
&=\dfrac{-1-(-2)}{2\sqrt1}\\
&=\boxed{\boxed{\dfrac12}}
\end{aligned}
No.
Nilai
\displaystyle\lim_{x\to\infty}\left(3x-\sqrt{9x^2+27}\right)= ....
Alternatif Penyelesaian
\begin{aligned}
\displaystyle\lim_{x\to\infty}\left(3x-\sqrt{9x^2+27}\right)&=\displaystyle\lim_{x\to\infty}\left(\sqrt{9x^2}-\sqrt{9x^2+27}\right)\\
&=\dfrac{0-0}{2\sqrt9}\\
&=\boxed{\boxed{0}}
\end{aligned}
No.
Tentukan nilai dari
{\displaystyle\lim_{x\to\infty}\left(\sqrt{2x+3}-\sqrt{3x-2}\right)}
Alternatif Penyelesaian
CARA BIASA
CARA CEPAT
\begin{aligned}
\displaystyle\lim_{x\to\infty}\left(\sqrt{2x+3}-\sqrt{3x-2}\right)&=\displaystyle\lim_{x\to\infty}\left(\sqrt{2x+3}-\sqrt{3x-2}\right){\color{red}\cdot\dfrac{\sqrt{2x+3}+\sqrt{3x-2}}{\sqrt{2x+3}+\sqrt{3x-2}}}\\
&=\displaystyle\lim_{x\to\infty}\dfrac{(2x+3)-(3x-2)}{\sqrt{2x+3}+\sqrt{3x-2}}\\
&=\displaystyle\lim_{x\to\infty}\dfrac{2x+3-3x+2}{\sqrt{2x+3}+\sqrt{3x-2}}\\
&=\displaystyle\lim_{x\to\infty}\dfrac{-x+5}{\sqrt{2x+3}+\sqrt{3x-2}}\\
&=\displaystyle\lim_{x\to\infty}\dfrac{-\dfrac{x}x+\dfrac5x}{\sqrt{\dfrac{2x}{x^2}+\dfrac3{x^2}}+\sqrt{\dfrac{3x}{x^2}-\dfrac2{x^2}}}\\
&=\displaystyle\lim_{x\to\infty}\dfrac{-1+\dfrac5x}{\sqrt{\dfrac2x+\dfrac3{x^2}}+\sqrt{\dfrac3x-\dfrac2{x^2}}}\\
&=\dfrac{-1+0}{\sqrt{0+0}+\sqrt{0-0}}\\
&=\dfrac{-1}0\\
&=\boxed{\boxed{-\infty}}
\end{aligned}
{2x\lt3x} , jadi hasilnya adalah -\infty .
No.
Tentukan nilai dari
{\displaystyle\lim_{x\to\infty}\left(\sqrt{3x-10}-\sqrt{x+2}\right)}
Alternatif Penyelesaian
CARA BIASA
CARA CEPAT
\begin{aligned}
\displaystyle\lim_{x\to\infty}\left(\sqrt{3x-10}-\sqrt{x+2}\right)&=\displaystyle\lim_{x\to\infty}\left(\sqrt{3x-10}-\sqrt{x+2}\right){\color{red}\cdot\dfrac{\sqrt{3x-10}+\sqrt{x+2}}{\sqrt{3x-10}+\sqrt{x+2}}}\\
&=\displaystyle\lim_{x\to\infty}\dfrac{(3x-10)-(x+2)}{\sqrt{3x-10}+\sqrt{x+2}}\\
&=\displaystyle\lim_{x\to\infty}\dfrac{3x-10-x-2}{\sqrt{3x-10}+\sqrt{x+2}}\\
&=\displaystyle\lim_{x\to\infty}\dfrac{2x-12}{\sqrt{3x-10}+\sqrt{x+2}}\\
&=\displaystyle\lim_{x\to\infty}\dfrac{\dfrac{2x}x-\dfrac{12}x}{\sqrt{\dfrac{3x}{x^2}-\dfrac{10}{x^2}}+\sqrt{\dfrac{x}{x^2}+\dfrac2{x^2}}}\\
&=\displaystyle\lim_{x\to\infty}\dfrac{2-\dfrac{12}x}{\sqrt{\dfrac3x-\dfrac{10}{x^2}}+\sqrt{\dfrac1x+\dfrac2{x^2}}}\\
&=\dfrac{2-0}{\sqrt{0-0}+\sqrt{0+0}}\\
&=\dfrac20\\
&=\boxed{\boxed{\infty}}
\end{aligned}
{3x\gt x} , jadi hasilnya adalah \infty .
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas