SBMPTN Zone : Limit Trigonometri [2]

Berikut ini adalah kumpulan soal mengenai Limit Trigonometri tipe SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

Tipe:

  • 1
  • 2

No. 11

Nilai \displaystyle\lim_{x\to\frac{\pi}2}\dfrac{\sin\left(x-\dfrac{\pi}2\right)}{\sqrt{\dfrac{x}2}-\sqrt{\dfrac{\pi}4}} adalah
  1. 4\sqrt{\pi}
  2. 2\sqrt{\pi}
  3. \sqrt{\pi}
  1. \dfrac12\sqrt{\pi}
  2. \dfrac14\sqrt{\pi}
limxπ2sin(xπ2)x2π4x2+π4x2+π4=limxπ2(x2+π4)sin(xπ2)x2π4=limxπ2(x2+π4)sin(xπ2)12(xπ2)=limxπ22(x2+π4)sin(xπ2)xπ2=2(π22+π4)1=2(π4+π4)=2(12π+12π)=2π

No. 12

\displaystyle\lim_{x\to0}\dfrac{3x}{\left(1-\sqrt{\cos2x}\right)\csc2x}=
  1. 8
  2. 6
  3. 4
  1. 3
  2. 2
limx03x(1cos2x)csc2x=limx03xsin2x1cos2x1+cos2x1+cos2x=limx03xsin2x(1+cos2x)1cos2x=limx03xsin2x(1+cos2x)1(12sin2x)=limx03xsin2x(1+cos2x)11+2sin2x=limx03xsin2x(1+cos2x)2sin2x=limx032xsinxsin2xsinx(1+cos2x)=321121(1+cos2(0))=3(1+cos0)=3(1+1)=3(1+1)=3(2)=6

No. 13

\displaystyle\lim_{x\to0}\sqrt{\dfrac{x\cdot\tan x}{1+\sin^2x-\cos2x}}=
  1. \dfrac13
  2. \dfrac13\sqrt3
  3. \dfrac12\sqrt3
  1. \sqrt3
  2. 3
limx0xtanx1+sin2xcos2x=limx0xtanx1+sin2x(12sin2x)=limx0xtanx1+sin2x1+2sin2x=limx0xtanx3sin2x=limx013xsinxtanxsinx=13=13=133

No. 14

\displaystyle\lim_{x\to0}\dfrac{3x}{\left(1-\sqrt{\cos2x}\right)\csc2x}=
  1. 8
  2. 6
  3. 4
  1. 3
  2. 2
limx03x(1cos2x)csc2x=limx03xsin2x1cos2x1+cos2x1+cos2x=limx03xsin2x(1+cos2x)1cos2x1+cos2x1+cos2x=limx03xsin2x(1+cos2x)(1+cos2x)1cos22x=limx03xsin2x(1+cos2x)(1+cos2x)sin22x=limx03xsin2xsin2xsin2x(1+cos2x)(1+cos2x)=3222(1+cos0)(1+cos0)=321(1+1)(1+1)=32(1+1)2=3222=6

No. 15

\displaystyle\lim_{a\to b}\dfrac{\tan a-\tan b}{1+\left(1-\dfrac{a}b\right)\tan a\tan b-\dfrac{a}b}= ...
  1. \dfrac1b
  2. b
  3. -b
  1. -\dfrac1b
  2. 1
limabtanatanb1+(1ab)tanatanbab=limabtanatanb1ab+(1ab)tanatanb=limabtanatanb(1ab)(1+tanatanb)=limabtan(ab)bab=limabtan(ab)abb=limabbtan(ab)ab
Misal a-b=x
Jika a\to b maka {x=a-b\to b-b=0}

limabbtan(ab)ab=limx0btanxx=limx0btanxx=b1=b


  • 1
  • 2

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas