Berikut ini adalah kumpulan soal mengenai Limit Trigonometri tipe SBMPTN. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
No. 11
  Nilai 
\displaystyle\lim_{x\to\frac{\pi}2}\dfrac{\sin\left(x-\dfrac{\pi}2\right)}{\sqrt{\dfrac{x}2}-\sqrt{\dfrac{\pi}4}} adalah
  
	
		
			- 4\sqrt{\pi}
- 2\sqrt{\pi}
- \sqrt{\pi}
 
	
		
			- \dfrac12\sqrt{\pi}
- \dfrac14\sqrt{\pi}
 
 
  \(\begin{aligned}
\displaystyle\lim_{x\to\frac{\pi}2}\dfrac{\sin\left(x-\dfrac{\pi}2\right)}{\sqrt{\dfrac{x}2}-\sqrt{\dfrac{\pi}4}}\color{red}{\cdot\dfrac{\sqrt{\dfrac{x}2}+\sqrt{\dfrac{\pi}4}}{\sqrt{\dfrac{x}2}+\sqrt{\dfrac{\pi}4}}}&=\displaystyle\lim_{x\to\frac{\pi}2}\dfrac{\left(\sqrt{\dfrac{x}2}+\sqrt{\dfrac{\pi}4}\right)\sin\left(x-\dfrac{\pi}2\right)}{\dfrac{x}2-\dfrac{\pi}4}\\[20pt]
&=\displaystyle\lim_{x\to\frac{\pi}2}\dfrac{\left(\sqrt{\dfrac{x}2}+\sqrt{\dfrac{\pi}4}\right)\sin\left(x-\dfrac{\pi}2\right)}{\dfrac12\left(x-\dfrac{\pi}2\right)}\\[20pt]
&=\displaystyle\lim_{x\to\frac{\pi}2}2\left(\sqrt{\dfrac{x}2}+\sqrt{\dfrac{\pi}4}\right)\cdot\dfrac{\sin\left(x-\dfrac{\pi}2\right)}{x-\dfrac{\pi}2}\\[20pt]
&=2\left(\sqrt{\dfrac{\dfrac{\pi}2}2}+\sqrt{\dfrac{\pi}4}\right)\cdot1\\[20pt]
&=2\left(\sqrt{\dfrac{\pi}4}+\sqrt{\dfrac{\pi}4}\right)\\[8pt]
&=2\left(\dfrac12\sqrt{\pi}+\dfrac12\sqrt{\pi}\right)\\
&=\boxed{\boxed{2\sqrt{\pi}}}
\end{aligned}\)
No. 12
  \displaystyle\lim_{x\to0}\dfrac{3x}{\left(1-\sqrt{\cos2x}\right)\csc2x}=
  
  
  
  
    
      \(\eqalign{
  \displaystyle\lim_{x\to0}\dfrac{3x}{\left(1-\sqrt{\cos2x}\right)\csc2x}&=\displaystyle\lim_{x\to0}\dfrac{3x\sin2x}{1-\sqrt{\cos2x}}\cdot{\color{red}\dfrac{1+\sqrt{\cos2x}}{1+\sqrt{\cos2x}}}\\
  &=\displaystyle\lim_{x\to0}\dfrac{3x\sin2x\left(1+\sqrt{\cos2x}\right)}{1-\cos2x}\\
  &=\displaystyle\lim_{x\to0}\dfrac{3x\sin2x\left(1+\sqrt{\cos2x}\right)}{1-\left(1-2\sin^2x\right)}\\
  &=\displaystyle\lim_{x\to0}\dfrac{3x\sin2x\left(1+\sqrt{\cos2x}\right)}{1-1+2\sin^2x}\\
  &=\displaystyle\lim_{x\to0}\dfrac{3x\sin2x\left(1+\sqrt{\cos2x}\right)}{2\sin^2x}\\
  &=\displaystyle\lim_{x\to0}\dfrac32\cdot\dfrac{x}{\sin x}\cdot\dfrac{\sin2x}{\sin x}\cdot\left(1+\sqrt{\cos2x}\right)\\
  &=\dfrac32\cdot\dfrac11\cdot\dfrac21\cdot\left(1+\sqrt{\cos2(0)}\right)\\
  &=3\left(1+\sqrt{\cos0}\right)\\
  &=3\left(1+\sqrt1\right)\\
  &=3(1+1)\\
  &=3(2)\\
  &=\boxed{\boxed{6}}
  }\)
    
   
 No. 13
  \displaystyle\lim_{x\to0}\sqrt{\dfrac{x\cdot\tan x}{1+\sin^2x-\cos2x}}=
  
	
		
			- \dfrac13
- \dfrac13\sqrt3
- \dfrac12\sqrt3
 
	
 
  
  
    
      \(\eqalign{
  \displaystyle\lim_{x\to0}\sqrt{\dfrac{x\cdot\tan x}{1+\sin^2x-\cos2x}}&=\displaystyle\lim_{x\to0}\sqrt{\dfrac{x\cdot\tan x}{1+\sin^2x-\left(1-2\sin^2x\right)}}\\
  &=\displaystyle\lim_{x\to0}\sqrt{\dfrac{x\cdot\tan x}{1+\sin^2x-1+2\sin^2x}}\\
  &=\displaystyle\lim_{x\to0}\sqrt{\dfrac{x\cdot\tan x}{3\sin^2x}}\\
  &=\displaystyle\lim_{x\to0}\sqrt{\dfrac13\cdot\dfrac{x}{\sin x}\cdot\dfrac{\tan x}{\sin x}}\\
  &=\sqrt{\dfrac13}\\
  &=\dfrac1{\sqrt3}\\
  &=\boxed{\boxed{\dfrac13\sqrt3}}
  }\)
    
   
 
No. 14
  \displaystyle\lim_{x\to0}\dfrac{3x}{\left(1-\sqrt{\cos2x}\right)\csc2x}=
  
  
  
    
      \(\eqalign{
  \displaystyle\lim_{x\to0}\dfrac{3x}{\left(1-\sqrt{\cos 2x}\right)\csc2x}&=\displaystyle\lim_{x\to0}\dfrac{3x\sin2x}{1-\sqrt{\cos 2x}}{\color{red}\cdot\dfrac{1+\sqrt{\cos 2x}}{1+\sqrt{\cos 2x}}}\\
  &=\displaystyle\lim_{x\to0}\dfrac{3x\sin2x\left(1+\sqrt{\cos 2x}\right)}{1-\cos 2x}{\color{red}\cdot\dfrac{1+\cos 2x}{1+\cos 2x}}\\
  &=\displaystyle\lim_{x\to0}\dfrac{3x\sin2x\left(1+\sqrt{\cos 2x}\right)(1+\cos 2x)}{1-\cos^2 2x}\\
  &=\displaystyle\lim_{x\to0}\dfrac{3x\sin2x\left(1+\sqrt{\cos 2x}\right)(1+\cos 2x)}{\sin^2 2x}\\
  &=\displaystyle\lim_{x\to0}\dfrac{3x}{\sin 2x}\cdot\dfrac{\sin2x}{\sin 2x}\cdot\left(1+\sqrt{\cos 2x}\right)\cdot(1+\cos 2x)\\
  &=\dfrac32\cdot\dfrac22\cdot\left(1+\sqrt{\cos 0}\right)\cdot(1+\cos 0)\\
  &=\dfrac32\cdot1\cdot\left(1+\sqrt1\right)\cdot(1+1)\\
  &=\dfrac32\cdot\left(1+1\right)\cdot2\\
  &=\dfrac32\cdot2\cdot2\\
  &=\boxed{\boxed{6}}
  }\)
    
   
 
No. 15
  \displaystyle\lim_{a\to b}\dfrac{\tan a-\tan b}{1+\left(1-\dfrac{a}b\right)\tan a\tan b-\dfrac{a}b}= ...
  
  
    
      \(\eqalign{
  \displaystyle\lim_{a\to b}\dfrac{\tan a-\tan b}{1+\left(1-\dfrac{a}b\right)\tan a\tan b-\dfrac{a}b}&=\displaystyle\lim_{a\to b}\dfrac{\tan a-\tan b}{1-\dfrac{a}b+\left(1-\dfrac{a}b\right)\tan a\tan b}\\
  &=\displaystyle\lim_{a\to b}\dfrac{\tan a-\tan b}{\left(1-\dfrac{a}b\right)\left(1+\tan a\tan b\right)}\\
  &=\displaystyle\lim_{a\to b}\dfrac{\tan( a-b)}{\dfrac{b-a}b}\\
  &=\displaystyle\lim_{a\to b}\dfrac{\tan( a-b)}{\dfrac{a-b}{-b}}\\
  &=\displaystyle\lim_{a\to b}\dfrac{-b\tan( a-b)}{a-b}
  }\)
  Misal a-b=x
  Jika a\to b maka {x=a-b\to b-b=0}
  \(\eqalign{
  \displaystyle\lim_{a\to b}\dfrac{-b\tan( a-b)}{a-b}&=\displaystyle\lim_{x\to0}\dfrac{-b\tan x}x\\
  &=\displaystyle\lim_{x\to0}-b\cdot\dfrac{tan x}x\\
  &=-b\cdot1\\
  &=\boxed{\boxed{-b}}
  }\)
    
   
 
 
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas