SBMPTN Zone : Limit Trigonometri

Berikut ini adalah kumpulan soal mengenai Limit Trigonometri tipe SBMPTN. Jika ingin bertanya soal, silahkan gabung ke grup Facebook atau Telegram.

Tipe:

  • 1
  • 2

No. 1

\displaystyle\lim_{x\to0}\dfrac{\tan x}{x^2\csc3x}= ....
  1. 1
  2. 2
  3. 3
  1. 4
  2. 5
limx0tanxx2csc3x=limx0sinxsin3xx2cosx=13121=3

No. 2

\displaystyle\lim_{x\to\infty}\dfrac{x+\sec\dfrac1x}{x^3\sin^2\dfrac1{4x}}= ....
  1. 0
  2. \dfrac14
  3. 4
  1. 16
  2. 32
Misal t=\dfrac1x.
Jika x\to\infty maka t\to0

limxx+sec1xx3sin214x=limt01t+sect1t3sin2t4=limt0t2+t3sectsin2t4=limt0t2sin2t4(1+tsect)=12(14)2(1+0)=16

No. 3

\displaystyle\lim_{x\to0}\dfrac{\sec x+\cos x-2}{x^2\sin x}= ....
  1. -\dfrac18
  2. -\dfrac14
  3. 0
  1. \dfrac14
  2. \dfrac18
Extra close brace or missing open brace

No. 4

\displaystyle\lim_{x\to\infty}\dfrac{4x^3\sin\dfrac1{x^2}-x\tan^2\dfrac1x-\dfrac4x}{x\sqrt{\cos\dfrac2x}}= ....
Misal \dfrac1x=t
Jika x\to\infty maka t\to0

limx4x3sin1x2xtan21x4xxcos2x=limt04t3sint21ttan2t4t1tcos2ttt=limt04sint2t2tan2t4t2cos2t=4(1)tan2(0)4(0)2cos2(0)=4001=4

No. 5

\displaystyle\lim_{h\to0}\dfrac{\cos(x+2h)-\cos(x-2h)}{h\sqrt{4-h^2}}=
limh0cos(x+2h)cos(x2h)h4h2=limh0cosxcos2hsinxsin2h(cosxcos2h+sinxsin2h)h4h2=limh0cosxcos2hsinxsin2hcosxcos2hsinxsin2hh4h2=limh02sinxsin2hh4h2=limh02sinx4h2limh0sin2hh=2sinx4022=4sinx2=2sinx

No. 6

\displaystyle\lim_{a\to0}\dfrac1a\left(\dfrac{\sin^32a}{\cos2a}+\sin2a\cos2a\right) sama dengan
  1. 0
  2. \dfrac12
  3. 1
  1. 2
  2. \infty
lima01a(sin32acos2a+sin2acos2a)=lima0sin2aa(sin22acos2a+cos2a)=2(sin22(0)cos2(0)+cos2(0))=2(01+1)=2

No. 7

\displaystyle\lim_{x\to\frac14\pi}\dfrac{1-2\sin x\cos x}{\sin x-\cos x} =
  1. \dfrac12
  2. \dfrac12\sqrt2
  3. 1
  1. 0
  2. -1

CARA 1

limx14π12sinxcosxsinxcosx=limx14πsin2x+cos2x2sinxcosxsinxcosx=limx14πsin2x2sinxcosx+cos2xsinxcosx=limx14π(sinxcosx)2sinxcosx=limx14π(sinxcosx)=sin14πcos14π=122122=0

CARA 2 (L'HOPITAL)

limx14π12sinxcosxsinxcosx=limx14π1sin2xsinxcosx=limx14π2cos2xcosx+sinx=2cos2(14π)cos14π+sin14π=2cos12π122+122=2(0)2=0

No. 8

Nilai dari \displaystyle\lim_{x\to0}\dfrac{3x^2-\sin\left(3x^2\right)}{2x^6}
  1. 0
  2. \dfrac94
  3. \dfrac92
  1. \dfrac34
  2. 9

CARA BIASA

Misal L=\displaystyle\lim_{x\to0}\dfrac{3x^2-\sin\left(3x^2\right)}{2x^6}
limx03x2sin(3x2)2x6=limx03x2(3sinx24sin3x2)2x6L=limx03x23sinx2+4sin3x22x6L=limx03x23sinx22x6+limx04sin3x22x6L=3limx0x2sinx22x6+limx02sin3x2x6
Misal x^2=3y^2
L=3limy03y2sin3y22(3y2)3+limx02sinx2x2sinx2x2sinx2x2=3limy03y2sin3y2227y6+2111=327limy03y2sin3y22y6+2L=19L+289L=2L=94

CARA L'HOPITAL

limx03x2sin(3x2)2x6=limx06x6xcos(3x2)12x5L'hopital=limx01cos(3x2)2x4=limx06xsin(3x2)8x3=limx03sin(3x2)4x2L'hopital=limx0343sin(3x2)3x2=3431=94

No. 9

\displaystyle\lim_{x\to\dfrac{\pi}4}\dfrac{\dfrac1{\sqrt2}\sin\left(\dfrac{\pi}4-2x\right)+\dfrac1{\sqrt2}\cos\left(\dfrac{\pi}4-2x\right)}{4x-\pi}=
k=(12)2+(12)2=12+12=1=1

tanα=1212=1α=π4

limxπ412sin(π42x)+12cos(π42x)4xπ=limxπ4cos(π42xπ4)4xπ=limxπ4cos(2x)4xπ=limxπ4cos(2x)2(2x+π2)=limxπ4sin(π22x)2(π22x)=12=12

No. 10

\displaystyle\lim_{x\to\infty}\dfrac{\sin\dfrac3x}{x^2\tan\dfrac2x\left(1-\cos\dfrac2x\right)}=
  1. \dfrac34
  2. \dfrac32
  3. 3
  1. 1
  2. \dfrac14
Misal y=\dfrac1x
Jika x\to\infty maka
y=\dfrac1x\to\dfrac1{\infty}=0

limxsin3xx2tan2x(1cos2x)=limy0sin3y1y2tan2y(1cos2y)=limy0y2sin3ytan2y(1(12sin2y))=limy0y2sin3ytan2y(11+2sin2y)=limy0y2sin3ytan2y(2sin2y)=limy0y2sin3y2tan2ysin2y=limy012ytan2yysinxsin3ysiny=121213=34


  • 1
  • 2

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas