Berikut ini adalah kumpulan soal mengenai turunan fungsi trigonometri tipe standar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.
No. 1
Turunan pertama dari
{f(x)=\sin^3\left(3x^2-2\right)} adalah
{2\sin^2\left(3x^2-2\right)\sin\left(6x^2-4\right)}
{18x\sin^2\left(3x^2-2\right)\cos\left(3x^2-2\right)}
{12\sin^2\left(3x^2-2\right)\cos\left(6x^2-4\right)}
{24\sin^3\left(3x^2-2\right)\cos^2\left(3x^2-2\right)}
{24\sin^3\left(3x^2-2\right)\cos\left(3x^2-2\right)}
Penyelesaian
\(\begin{aligned}
f(x)&=\sin^3\left(3x^2-2\right)\\
f'(x)&=3\sin^2\left(3x^2-2\right)\cos\left(3x^2-2\right)\cdot 6x\\
&=\boxed{\boxed{18x\sin^2\left(3x^2-2\right)\cos\left(3x^2-2\right)}}
\end{aligned}\)
No. 2
Turunan kedua dari fungsi
{y=\cos^{-1}x} adalah
y" adalah
\dfrac{1-3\cos^2x}{\cos^3x}
\dfrac{2+\cos^2x}{\cos^3x}
\dfrac{2-\cos^2x}{\cos^3x}
\dfrac{2+3\cos^2x}{\cos^3x}
\dfrac{2-3\cos^2x}{\cos^3x}
Penyelesaian
\(\eqalign{
y&=\cos^{-1}x\\
&=\dfrac1{\cos x}\\
&=\sec x\\
y'&=\tan x\sec x
}\)
\(\eqalign{
u&=\tan x\\
u'&=\sec^2x
}\) \(\eqalign{
v&=\sec x\\
v'&=\tan x\sec x
}\)
\(\eqalign{
y'&=u\cdot v\\
y"&=u'v+uv'\\
&=\sec^2x\sec x+\tan x\tan x\sec x\\
&=\sec^3x+\tan^2x\sec x\\
&=\dfrac1{\cos^3x}+\dfrac{\sin^2x}{\cos^2x}\dfrac1{\cos x}\\
&=\dfrac1{\cos^3x}+\dfrac{\sin^2x}{\cos^3x}\\
&=\dfrac{1+\sin^2x}{\cos^3x}\\
&=\dfrac{1+1-\cos^2x}{\cos^3x}\\
&=\boxed{\boxed{\dfrac{2-\cos^2x}{\cos^3x}}}
}\)
No. 3
Turunan kedua dari fungsi
{f(t)=t\sin t} adalah
f"(t) adalah ....
{t\sin t+2\cos t}
{t\sin t-2\cos t}
{-2t\sin t+\cos t}
{2t\sin t+\cos t}
{-t\sin t+2\cos t}
Penyelesaian
\(\eqalign{
u&=t\\
u'&=1
}\) \(\eqalign{
v&=\sin t\\
v'&=\cos t
}\)
\(\eqalign{
f(t)&=uv\\
f'(t)&=u'v+uv'\\
&=1\cdot\sin t+t\cos t\\
&=\sin t+t\cos t
}\)
\(\eqalign{
u&=t\\
u'&=1
}\) \(\eqalign{
v&=\cos t\\
v'&=-\sin t
}\)
\(\eqalign{
f"(t)&=\cos t+1\cdot\cos t+t\cdot(-\sin t)\\
&=\cos t+\cos t-t\sin t\\
&=\boxed{\boxed{-t\sin t+2\cos t}}
}\)
No. 4
Turunan kedua dari fungsi
{y=x\cos x} adalah
y" adalah
{-x\cos x+2\sin x}
{x\cos x-2\sin x}
{x\cos x+2\sin x}
{-x\cos x-2\sin x}
{-x\cos x-\sin x}
Penyelesaian
\(\eqalign{
u&=x\\
u'&=1
}\) \(\eqalign{
v&=\cos x\\
v'&=-\sin x
}\)
\(\eqalign{
y&=uv\\
y'&=u'v+uv'\\
&=1\cdot\cos x+x(-\sin x)\\
&=\cos x-x\sin x
}\)
\(\eqalign{
u&=x\\
u'&=1
}\) \(\eqalign{
v&=\sin x\\
v'&=\cos x
}\)
\(\eqalign{
y"&=-\sin x-\left(1\cdot\sin x+x\cos x\right)\\
&=-\sin x-\sin x-x\cos x\\
&=\boxed{\boxed{-x\cos x-2\sin x}}
}\)
No. 5
Turunan kedua dari fungsi
{y=\tan^2(3x-2)} adalah
{54\tan^2(3x-2)\sec^2(3x-2)+18\sec^4(3x-2)}
{54\tan^2(3x-2)\sec^2(3x-2)+18\sec^2(3x-2)}
{36\tan(3x-2)\sec^2(3x-2)+18\sec^4(3x-2)}
{18\tan^2(3x-2)\sec^2(3x-2)+36\sec^4(3x-2)}
{18\tan(3x-2)\sec^2(3x-2)+18\sec^4(3x-2)}
Penyelesaian
\(\eqalign{
y&=\tan^2(3x-2)\\
y'&=2\tan(3x-2)\sec^2(3x-2)\cdot3\\
&=6\tan(3x-2)\sec^2(3x-2)
}\)
\(\eqalign{
u&=6\tan(3x-2)\\
u'&=6\cdot3\sec^2(3x-2)\\
&=18\sec^2(3x-2)
}\) \(\eqalign{
v&=\sec^2(3x-2)\\
v'&=2\sec(3x-2)\cdot3\tan(3x-2)\sec(3x-2)\\
&=6\tan(3x-2)\sec^2(3x-2)
}\)
\(\eqalign{
y"&=u'v+uv'\\
&=18\sec^2(3x-2)\sec^2(3x-2)+6\tan(3x-2)6\tan(3x-2)\sec^2(3x-2)\\
&=18\sec^4(3x-2)+36\tan^2(3x-2)\sec^2(3x-2)\\
&=\boxed{\boxed{36\tan^2(3x-2)\sec^2(3x-2)+18\sec^4(3x-2)}}
}\)
No. 6
Jika
{f(x)=2\sin x+\cos x} , maka
f'\left(\dfrac{\pi}2\right) adalah...
Penyelesaian
\(\eqalign{
f(x)&=2\sin x+\cos x\\
f'(x)&=2\cos x-\sin x\\
f'\left(\dfrac{\pi}2\right)&=2\cos\left(\dfrac{\pi}2\right)-\sin\left(\dfrac{\pi}2\right)\\
&=2(0)-1\\
&=\boxed{\boxed{-1}}
}\)
No. 7
Diketahui
{f(x)=\sin x\cos x} . Nilai turunan
f(x) di titik
{x=\dfrac{\pi}6} adalah....
\dfrac12\sqrt3
\dfrac12\sqrt2
\dfrac12
-\dfrac12
-\dfrac12\sqrt2
Penyelesaian
CARA 1
\(\eqalign{
u&=\sin x\\
u'&=\cos x
}\) \(\eqalign{
v&=\cos x\\
v'&=-\sin x
}\)
\(\eqalign{
f'(x)&=u'v+uv'\\
&=\cos x\cos x+\sin x(-\sin x)\\
&=\cos^2x-\sin^2x\\
f'\left(\dfrac{\pi}6\right)&=\cos^2\dfrac{\pi}6-\sin^2\dfrac{\pi}6\\
&=\left(\dfrac12\sqrt3\right)^2-\left(\dfrac12\right)^2\\
&=\dfrac34-\dfrac14\\
&=\dfrac24\\
&=\boxed{\boxed{\dfrac12}}
}\)
CARA 2
\(\eqalign{
f(x)&=\sin x\cos x\\
&=\dfrac12\cdot2\sin x\cos x\\
&=\dfrac12\sin2x\\
f'(x)&=\dfrac12\cdot2\cos2x\\
&=\cos2x\\
f'\left(\dfrac{\pi}6\right)&=\cos2\left(\dfrac{\pi}6\right)\\
&=\cos\dfrac{\pi}3\\
&=\boxed{\boxed{\dfrac12}}
}\)
No. 8
Nilai turunan dari
{f(x)=\dfrac{\sin x+\cos x}{\cos x}} pada
{x=\dfrac{\pi}6} adalah ....
Penyelesaian
CARA 1
\(\eqalign{
u&=\sin x+\cos x\\
u'&=\cos x-\sin x
}\) \(\eqalign{
v&=\cos x\\
v'&=-\sin x
}\)
\(\eqalign{
f(x)&=\dfrac{u}v\\
f'(x)&=\dfrac{u'v-uv'}{v^2}\\
&=\dfrac{(\cos x-\sin x)\cos x-(\sin x+\cos x)(-\sin x)}{(\cos x)^2}\\
&=\dfrac{\cos^2 x-\cancel{\sin x\cos x}+\sin^2 x+\cancel{\sin x\cos x}}{\cos^2 x}\\
&=\dfrac1{\cos^2 x}\\
f'\left(\dfrac{\pi}6\right)&=\dfrac1{\cos^2\dfrac{\pi}6}\\
&=\dfrac1{\left(\dfrac12\sqrt3\right)^2}\\
&=\dfrac1{\dfrac34}\\
&=\boxed{\boxed{\dfrac43}}
}\)
CARA 2
\(\eqalign{
f(x)&=\dfrac{\sin x+\cos x}{\cos x}\\
&=\dfrac{\sin x}{\cos x}+\dfrac{\cos x}{\cos x}\\
&=\tan x+1\\
f'(x)&=\sec^2x\\
f'\left(\dfrac{\pi}6\right)&=\sec^2\dfrac{\pi}6\\
&=\left(\dfrac2{\sqrt3}\right)^2\\
&=\boxed{\boxed{\dfrac43}}
}\)
No. 9
Tentukan turunan pertama fungsi-fungsi berikut.
f(x)=(x+5)\sec(2x-3)
g(x)=\sin2x\cos(x-9)
Penyelesaian
f(x)=(x+5)\sec(2x-3)
\(\eqalign{
u&=x+5\\
u'&=1
}\)
\(\eqalign{
v&=\sec(2x-3)\\
v'&=2\tan(2x-3)\sec(2x-3)
}\)
\(\eqalign{
f'(x)&=u'v+uv'\\
&=1\cdot\sec(2x-3)+(x+5)2\tan(2x-3)\sec(2x-3)\\
&=\boxed{\boxed{\sec(2x-3)+2(x+5)\tan(2x-3)\sec(2x-3)}}
}\)
g(x)=\sin2x\cos(x-9)
\(\eqalign{
u&=\sin2x\\
u'&=2\cos2x
}\)
\(\eqalign{
v&=\cos(x-9)\\
v'&=-\sin(x-9)
}\)
\(\eqalign{
g'(x)&=u'v+uv'\\
&=2\cos2x\cos(x-9)+\sin2x\left(-\sin(x-9)\right)\\
&=\boxed{\boxed{2\cos2x\cos(x-9)-\sin2x\sin(x-9)}}
}\)
No. 10
Turunan fungsi
f(x)=2-2\sin\dfrac{\pi x}2 bernilai nol di
x_1 dan
x_2 . Jika
0\leq x\leq4 dan
x_1\gt x_2 , tentukan nilai
{x_1}^2+x_2
Penyelesaian
\(\eqalign{
f'(x)&=0-2\cdot\dfrac{\pi}2\cos\dfrac{\pi x}2\\
&=-\pi\cos\dfrac{\pi x}2
}\)
\(\eqalign{
f'(x)&=0\\
-\pi\cos\dfrac{\pi x}2&=0\\
\cos\dfrac{\pi x}2&=0\\
\cos\dfrac{\pi x}2&= \cos\dfrac{\pi}2
}\)
\(\eqalign{
\dfrac{\pi x}2&=\dfrac{\pi}2+2k\pi\ &{\color{red}\times\dfrac2{\pi}}\\
x&=1+4k\\
x&=1
}\) \(\eqalign{
\dfrac{\pi x}2&=-\dfrac{\pi}2+2k\pi\ &{\color{red}\times\dfrac2{\pi}}\\
x&=-1+4k\\
x&=3
}\)
x_1=3 ,
x_2=1
\(\eqalign{
{x_1}^2+x_2&=3^2+1\\
&=9+1\\
&=\boxed{\boxed{10}}
}\)
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas