Exercise Zone: Turunan Fungsi Trigonometri

Berikut ini adalah kumpulan soal mengenai turunan fungsi trigonometri tipe standar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

Tipe:

  • 1
  • 2

No. 1

Turunan pertama dari {f(x)=\sin^3\left(3x^2-2\right)} adalah
  1. {2\sin^2\left(3x^2-2\right)\sin\left(6x^2-4\right)}
  2. {18x\sin^2\left(3x^2-2\right)\cos\left(3x^2-2\right)}
  3. {12\sin^2\left(3x^2-2\right)\cos\left(6x^2-4\right)}
  1. {24\sin^3\left(3x^2-2\right)\cos^2\left(3x^2-2\right)}
  2. {24\sin^3\left(3x^2-2\right)\cos\left(3x^2-2\right)}
\(\begin{aligned} f(x)&=\sin^3\left(3x^2-2\right)\\ f'(x)&=3\sin^2\left(3x^2-2\right)\cos\left(3x^2-2\right)\cdot 6x\\ &=\boxed{\boxed{18x\sin^2\left(3x^2-2\right)\cos\left(3x^2-2\right)}} \end{aligned}\)

No. 2

Turunan kedua dari fungsi {y=\cos^{-1}x} adalah y" adalah
  1. \dfrac{1-3\cos^2x}{\cos^3x}
  2. \dfrac{2+\cos^2x}{\cos^3x}
  3. \dfrac{2-\cos^2x}{\cos^3x}
  1. \dfrac{2+3\cos^2x}{\cos^3x}
  2. \dfrac{2-3\cos^2x}{\cos^3x}
\(\eqalign{ y&=\cos^{-1}x\\ &=\dfrac1{\cos x}\\ &=\sec x\\ y'&=\tan x\sec x }\)
\(\eqalign{ u&=\tan x\\ u'&=\sec^2x }\)\(\eqalign{ v&=\sec x\\ v'&=\tan x\sec x }\)
\(\eqalign{ y'&=u\cdot v\\ y"&=u'v+uv'\\ &=\sec^2x\sec x+\tan x\tan x\sec x\\ &=\sec^3x+\tan^2x\sec x\\ &=\dfrac1{\cos^3x}+\dfrac{\sin^2x}{\cos^2x}\dfrac1{\cos x}\\ &=\dfrac1{\cos^3x}+\dfrac{\sin^2x}{\cos^3x}\\ &=\dfrac{1+\sin^2x}{\cos^3x}\\ &=\dfrac{1+1-\cos^2x}{\cos^3x}\\ &=\boxed{\boxed{\dfrac{2-\cos^2x}{\cos^3x}}} }\)

No. 3

Turunan kedua dari fungsi {f(t)=t\sin t} adalah f"(t) adalah ....
  1. {t\sin t+2\cos t}
  2. {t\sin t-2\cos t}
  3. {-2t\sin t+\cos t}
  1. {2t\sin t+\cos t}
  2. {-t\sin t+2\cos t}
\(\eqalign{ u&=t\\ u'&=1 }\)\(\eqalign{ v&=\sin t\\ v'&=\cos t }\)
\(\eqalign{ f(t)&=uv\\ f'(t)&=u'v+uv'\\ &=1\cdot\sin t+t\cos t\\ &=\sin t+t\cos t }\)
\(\eqalign{ u&=t\\ u'&=1 }\)\(\eqalign{ v&=\cos t\\ v'&=-\sin t }\)
\(\eqalign{ f"(t)&=\cos t+1\cdot\cos t+t\cdot(-\sin t)\\ &=\cos t+\cos t-t\sin t\\ &=\boxed{\boxed{-t\sin t+2\cos t}} }\)

No. 4

Turunan kedua dari fungsi {y=x\cos x} adalah y" adalah
  1. {-x\cos x+2\sin x}
  2. {x\cos x-2\sin x}
  3. {x\cos x+2\sin x}
  1. {-x\cos x-2\sin x}
  2. {-x\cos x-\sin x}
\(\eqalign{ u&=x\\ u'&=1 }\)\(\eqalign{ v&=\cos x\\ v'&=-\sin x }\)
\(\eqalign{ y&=uv\\ y'&=u'v+uv'\\ &=1\cdot\cos x+x(-\sin x)\\ &=\cos x-x\sin x }\)
\(\eqalign{ u&=x\\ u'&=1 }\)\(\eqalign{ v&=\sin x\\ v'&=\cos x }\)
\(\eqalign{ y"&=-\sin x-\left(1\cdot\sin x+x\cos x\right)\\ &=-\sin x-\sin x-x\cos x\\ &=\boxed{\boxed{-x\cos x-2\sin x}} }\)

No. 5

Turunan kedua dari fungsi {y=\tan^2(3x-2)} adalah
  1. {54\tan^2(3x-2)\sec^2(3x-2)+18\sec^4(3x-2)}
  2. {54\tan^2(3x-2)\sec^2(3x-2)+18\sec^2(3x-2)}
  3. {36\tan(3x-2)\sec^2(3x-2)+18\sec^4(3x-2)}
  1. {18\tan^2(3x-2)\sec^2(3x-2)+36\sec^4(3x-2)}
  2. {18\tan(3x-2)\sec^2(3x-2)+18\sec^4(3x-2)}
\(\eqalign{ y&=\tan^2(3x-2)\\ y'&=2\tan(3x-2)\sec^2(3x-2)\cdot3\\ &=6\tan(3x-2)\sec^2(3x-2) }\)
\(\eqalign{ u&=6\tan(3x-2)\\ u'&=6\cdot3\sec^2(3x-2)\\ &=18\sec^2(3x-2) }\)\(\eqalign{ v&=\sec^2(3x-2)\\ v'&=2\sec(3x-2)\cdot3\tan(3x-2)\sec(3x-2)\\ &=6\tan(3x-2)\sec^2(3x-2) }\)
\(\eqalign{ y"&=u'v+uv'\\ &=18\sec^2(3x-2)\sec^2(3x-2)+6\tan(3x-2)6\tan(3x-2)\sec^2(3x-2)\\ &=18\sec^4(3x-2)+36\tan^2(3x-2)\sec^2(3x-2)\\ &=\boxed{\boxed{36\tan^2(3x-2)\sec^2(3x-2)+18\sec^4(3x-2)}} }\)

No. 6

Jika {f(x)=2\sin x+\cos x}, maka f'\left(\dfrac{\pi}2\right) adalah...
  1. -2
  2. -1
  3. 0
  1. 1
  2. 2
\(\eqalign{ f(x)&=2\sin x+\cos x\\ f'(x)&=2\cos x-\sin x\\ f'\left(\dfrac{\pi}2\right)&=2\cos\left(\dfrac{\pi}2\right)-\sin\left(\dfrac{\pi}2\right)\\ &=2(0)-1\\ &=\boxed{\boxed{-1}} }\)

No. 7

Diketahui {f(x)=\sin x\cos x}. Nilai turunan f(x) di titik {x=\dfrac{\pi}6} adalah....
  1. \dfrac12\sqrt3
  2. \dfrac12\sqrt2
  3. \dfrac12
  1. -\dfrac12
  2. -\dfrac12\sqrt2

CARA 1

\(\eqalign{ u&=\sin x\\ u'&=\cos x }\)\(\eqalign{ v&=\cos x\\ v'&=-\sin x }\)
\(\eqalign{ f'(x)&=u'v+uv'\\ &=\cos x\cos x+\sin x(-\sin x)\\ &=\cos^2x-\sin^2x\\ f'\left(\dfrac{\pi}6\right)&=\cos^2\dfrac{\pi}6-\sin^2\dfrac{\pi}6\\ &=\left(\dfrac12\sqrt3\right)^2-\left(\dfrac12\right)^2\\ &=\dfrac34-\dfrac14\\ &=\dfrac24\\ &=\boxed{\boxed{\dfrac12}} }\)

CARA 2

\(\eqalign{ f(x)&=\sin x\cos x\\ &=\dfrac12\cdot2\sin x\cos x\\ &=\dfrac12\sin2x\\ f'(x)&=\dfrac12\cdot2\cos2x\\ &=\cos2x\\ f'\left(\dfrac{\pi}6\right)&=\cos2\left(\dfrac{\pi}6\right)\\ &=\cos\dfrac{\pi}3\\ &=\boxed{\boxed{\dfrac12}} }\)

No. 8

Nilai turunan dari {f(x)=\dfrac{\sin x+\cos x}{\cos x}} pada {x=\dfrac{\pi}6} adalah ....
  1. \dfrac13
  2. \dfrac23
  3. 1
  1. \dfrac43
  2. \dfrac53

CARA 1

\(\eqalign{ u&=\sin x+\cos x\\ u'&=\cos x-\sin x }\)\(\eqalign{ v&=\cos x\\ v'&=-\sin x }\)
\(\eqalign{ f(x)&=\dfrac{u}v\\ f'(x)&=\dfrac{u'v-uv'}{v^2}\\ &=\dfrac{(\cos x-\sin x)\cos x-(\sin x+\cos x)(-\sin x)}{(\cos x)^2}\\ &=\dfrac{\cos^2 x-\cancel{\sin x\cos x}+\sin^2 x+\cancel{\sin x\cos x}}{\cos^2 x}\\ &=\dfrac1{\cos^2 x}\\ f'\left(\dfrac{\pi}6\right)&=\dfrac1{\cos^2\dfrac{\pi}6}\\ &=\dfrac1{\left(\dfrac12\sqrt3\right)^2}\\ &=\dfrac1{\dfrac34}\\ &=\boxed{\boxed{\dfrac43}} }\)

CARA 2

\(\eqalign{ f(x)&=\dfrac{\sin x+\cos x}{\cos x}\\ &=\dfrac{\sin x}{\cos x}+\dfrac{\cos x}{\cos x}\\ &=\tan x+1\\ f'(x)&=\sec^2x\\ f'\left(\dfrac{\pi}6\right)&=\sec^2\dfrac{\pi}6\\ &=\left(\dfrac2{\sqrt3}\right)^2\\ &=\boxed{\boxed{\dfrac43}} }\)

No. 9

Tentukan turunan pertama fungsi-fungsi berikut.
  1. f(x)=(x+5)\sec(2x-3)
  2. g(x)=\sin2x\cos(x-9)
  1. f(x)=(x+5)\sec(2x-3)
    \(\eqalign{ u&=x+5\\ u'&=1 }\)
    \(\eqalign{ v&=\sec(2x-3)\\ v'&=2\tan(2x-3)\sec(2x-3) }\)

    \(\eqalign{ f'(x)&=u'v+uv'\\ &=1\cdot\sec(2x-3)+(x+5)2\tan(2x-3)\sec(2x-3)\\ &=\boxed{\boxed{\sec(2x-3)+2(x+5)\tan(2x-3)\sec(2x-3)}} }\)

  2. g(x)=\sin2x\cos(x-9)
    \(\eqalign{ u&=\sin2x\\ u'&=2\cos2x }\)
    \(\eqalign{ v&=\cos(x-9)\\ v'&=-\sin(x-9) }\)

    \(\eqalign{ g'(x)&=u'v+uv'\\ &=2\cos2x\cos(x-9)+\sin2x\left(-\sin(x-9)\right)\\ &=\boxed{\boxed{2\cos2x\cos(x-9)-\sin2x\sin(x-9)}} }\)

No. 10

Turunan fungsi f(x)=2-2\sin\dfrac{\pi x}2 bernilai nol di x_1 dan x_2. Jika 0\leq x\leq4 dan x_1\gt x_2, tentukan nilai {x_1}^2+x_2
\(\eqalign{ f'(x)&=0-2\cdot\dfrac{\pi}2\cos\dfrac{\pi x}2\\ &=-\pi\cos\dfrac{\pi x}2 }\)

\(\eqalign{ f'(x)&=0\\ -\pi\cos\dfrac{\pi x}2&=0\\ \cos\dfrac{\pi x}2&=0\\ \cos\dfrac{\pi x}2&= \cos\dfrac{\pi}2 }\)
\(\eqalign{ \dfrac{\pi x}2&=\dfrac{\pi}2+2k\pi\ &{\color{red}\times\dfrac2{\pi}}\\ x&=1+4k\\ x&=1 }\)\(\eqalign{ \dfrac{\pi x}2&=-\dfrac{\pi}2+2k\pi\ &{\color{red}\times\dfrac2{\pi}}\\ x&=-1+4k\\ x&=3 }\)
x_1=3, x_2=1

\(\eqalign{ {x_1}^2+x_2&=3^2+1\\ &=9+1\\ &=\boxed{\boxed{10}} }\)


  • 1
  • 2

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas