Berikut ini adalah kumpulan soal mengenai
. Jika ingin bertanya soal, silahkan gabung ke grup
Telegram,
Signal,
Discord, atau
WhatsApp.
No.
Diketahui
{f(x)=\cos^2x+4\cos x+4} dan
{g(x)=\cos x+2}.
- Tentukan turunan pertama dari h(x), jika diketahui h(x)=\dfrac{f(x)}{g(x)}
- Hitunglah nilai dari \dfrac{d^2h(x)}{dx^2} untuk x=\dfrac{\pi}3
- h(x)=\dfrac{f(x)}{g(x)}
\begin{aligned}
h(x)&=\dfrac{\cos^2x+4\cos x+4}{\cos x+2}\\
&=\dfrac{(\cos x+2)^2}{\cos x+2}\\
&=\cos x+2\\
\dfrac{dh(x)}{dx}&=\boxed{\boxed{-\sin x}}
\end{aligned}
- \dfrac{d^2h(x)}{dx^2}=-\cos x
\begin{aligned}
\dfrac{d^2h\left(\dfrac{\pi}3\right)}{dx^2}&=-\cos\dfrac{\pi}3\\
&=\boxed{\boxed{-\dfrac12}}
\end{aligned}
No.
Tentukan
y' jlka diketahui fungsi y sebagai berikut!
y=x^3\tan2x-\dfrac12x^2\tan2x+x\tan2x-\tan2x
\begin{aligned}
y&=x^3\tan2x-\dfrac12\tan2x+x\tan2x-\tan2x\\
&=\tan2x\left(x^3-\dfrac12x^2+x-1\right)
\end{aligned}
\begin{aligned}
u&=\tan2x\\
u'&=2\sec^22x
\end{aligned}
\begin{aligned}
v&=x^3-\dfrac12x^2+x-1\\
v'&=3x^2-x+1
\end{aligned}
\begin{aligned}
y'&=u'v+uv'\\
&=2\sec^22x\left(x^3-\dfrac12x^2+x-1\right)+\tan2x\left(3x^2-x+1\right)\\
&=\boxed{\boxed{2x^3\sec^22x-x^2\sec^22x+2x\sec^22x-2\sec^22x+3x^2\tan2x-x\tan2x+\tan2x}}
\end{aligned}
No.
Tentukan turunan dari fungsi trigonometri berikut!
y=\sin10x
\begin{aligned}
y&=\sin10x\\
y'&=\boxed{\boxed{10\cos10x}}
\end{aligned}
No.
Tentukan turunan kedua dari
y=2\cos\left(x^3-x\right)
\begin{aligned}
y&=2\cos\left(x^3-x\right)\\
y'&=2\left(-\sin\left(x^3-x\right)\right)\left(3x^2-1\right)\\
&=\left(-6x^2+2\right)\sin\left(x^3-x\right)
\end{aligned}
\begin{aligned}
u&=-6x^2+2\\
u'&=-12x
\end{aligned}
\begin{aligned}
v&=\sin\left(x^3-x\right)\\
v'&=\left(3x^2-1\right)\cos\left(x^3-x\right)
\end{aligned}
\begin{aligned}
y"&=u'v+uv'\\
&=-12x\sin\left(x^3-x\right)+\left(-6x^2+2\right)\left(3x^2-1\right)\cos\left(x^3-x\right)\\
&=-12x\sin\left(x^3-x\right)-2\left(3x^2-1\right)^2\cos\left(x^3-x\right)
\end{aligned}
No.
Gunakan
{f'(x)=\displaystyle\lim_{h\to0}\dfrac{f(x+h)-f(x)}h} untuk menentukan turunan
{f(x)=3\sin x} untuk
{x=\dfrac{\pi}6}
\begin{aligned}
f'(x)&=\displaystyle\lim_{h\to0}\dfrac{f(x+h)-f(x)}h\\
&=\displaystyle\lim_{h\to0}\dfrac{3\sin(x+h)-3\sin x}h\\
&=\displaystyle\lim_{h\to0}\dfrac{3\left(\sin x\cos h+\cos x\sin h\right)-3\sin x}h\\
&=\displaystyle\lim_{h\to0}\dfrac{3\sin x\cos h+3\cos x\sin h-3\sin x}h\\
&=\displaystyle\lim_{h\to0}\dfrac{3\sin x\left(1-2\sin^2\dfrac12h\right)+3\cos x\sin h-3\sin x}h\\
&=\displaystyle\lim_{h\to0}\dfrac{3\sin x-6\sin x\sin^2\dfrac12h+3\cos x\sin h-3\sin x}h\\
&=\displaystyle\lim_{h\to0}\dfrac{-6\sin x\sin^2\dfrac12h+3\cos x\sin h}h\\
&=\displaystyle\lim_{h\to0}\left(-6\sin x\sin\dfrac12h\dfrac{\sin\dfrac12h}h+3\cos x\dfrac{\sin h}h\right)\\
&=-6\sin x\sin\dfrac12(0)\cdot\dfrac12+3\cos x\cdot1\\
&=-6\sin x\sin0\cdot\dfrac12+3\cos x\\
&=-6\sin x(0)\cdot\dfrac12+3\cos x\\
&=3\cos x\\
f'\left(\dfrac{\pi}6\right)&=3\cos\dfrac{\pi}6\\
&=3\left(\dfrac12\sqrt3\right)\\
&=\boxed{\boxed{\dfrac32\sqrt3}}
\end{aligned}
No.
y=\sqrt[3]{\sin^2(2x-1)^5}
y'= ...
\begin{aligned}
y&=\sqrt[3]{\sin^2(2x-1)^5}\\
&=\sin^{\frac23}(2x-1)^5\\
y'&=\dfrac23\sin^{-\frac13}(2x-1)^5\cdot\cos(2x-1)^5\cdot5(2x-1)^4\cdot2\\
&=\dfrac{20(2x-1)^4\cos(2x-1)^5}{3\sin^{\frac13}(2x-1)^5}\\
&=\boxed{\boxed{\dfrac{20(2x-1)^4\cos(2x-1)^5}{3\sqrt[3]{\sin(2x-1)^5}}}}
\end{aligned}
No.
Hitunglah
y'(0), jika
{y=\dfrac{\sin x}{1+\cos x}}
\begin{aligned} u&=\sin x\\
u'&=\cos x\end{aligned}
\begin{aligned} v&=1+\cos x\\
v'&=-\sin x\end{aligned}
\begin{aligned} y&=\dfrac{u}v\\
y'&=\dfrac{u'v-uv'}{v^2}\\
&=\dfrac{\cos x(1+\cos x)-\sin x(-\sin x)}{(1+\cos x)^2}\\
&=\dfrac{\cos x+\cos^2x+\sin^2x}{(1+\cos x)^2}\\
&=\dfrac{\cos x+1}{(1+\cos x)^2}\\
&=\dfrac1{1+\cos x}\\
y'(0)&=\dfrac1{1+\cos0}\\
&=\dfrac1{1+1}\\
&=\boxed{\boxed{\dfrac12}}
\end{aligned}
No.
Hitunglah turunan
{y=\sin^3(3x-2)}
\begin{aligned} y&=\sin^3(3x-2)\\
y'&=3\sin^2(3x-2)\cdot\cos(3x-2)\cdot3\\
&=\boxed{\boxed{9\sin^2(3x-2)\cos(3x-2)}}
\end{aligned}
No.
Titik stasioner dari fungsi
{f(x)=\tan^2x} adalah untuk nilai
x= ....
\begin{aligned}
f(x)&=\tan^2x\\
f'(x)&=2\tan x\sec^2x
\end{aligned}
f(x) mencapai stasioner saat f'(x)=0
\begin{aligned}
2\tan x\sec^2x&=0\\
\tan x&=0\\
x&=0\degree+k\cdot180\degree\\
&=k\cdot180\degree
\end{aligned}
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas