Exercise Zone : Limit Trigonometri [2]

Berikut ini adalah kumpulan soal mengenai Limit Trigonometri tipe standar. Jika ada jawaban yang salah, mohon dikoreksi melalui komentar. Terima kasih.

Tipe:

  • 1
  • 2

No. 11

\displaystyle\lim_{x\to0}\dfrac{x}{2\csc x\left(1-\sqrt{\cos x}\right)}=
  1. -2
  2. -1
  3. 0
  1. 1
  2. 2
limx0x2cscx(1cosx)=limx0x21sinx(1cosx)1+cosx1+cosx=limx0xsinx(1+cosx)2(1cosx)1+cosx1+cosx=limx0xsinx(1+cosx)(1+cosx)2(1cos2x)=limx0xsinx(1+cosx)(1+cosx)2sin2x=limx0x(1+cosx)(1+cosx)2sinx=limx0xsinxlimx0(1+cosx)(1+cosx)2=1(1+cos0)(1+cos0)2=(1+1)(1+1)2=(1+1)(2)2=2

No. 12

Nilai \displaystyle\lim_{x\to2}\dfrac{\left(x^2-5x+6\right)\sin(x-2)}{\left(x^2-x-2\right)^2} adalah
  1. 0
  2. -\dfrac19
  3. \dfrac12
  1. 2
  2. 4
limx2(x25x+6)sin(x2)(x2x2)2=limx2(x3)(x2)sin(x2)((x+1)(x2))2=limx2(x3)(x2)sin(x2)(x+1)2(x2)2=limx2(x3)sin(x2)(x+1)2(x2)=limx2x3(x+1)2sin(x2)x2=23(2+1)21=1(3)2=19

No. 13

Nilai dari {\displaystyle\lim_{x\to0}\dfrac{\sin3x+\sin5x}{2x\cos4x}=}
limx0sin3x+sin5x2xcos4x=limx0sin3xx+sin5xx2xcos4xx=limx0sin3xx+sin5xx2cos4x=3+52cos4(0)=82(1)=4

No. 14

Nilai {\displaystyle\lim_{x\to0}\dfrac{x\tan3x}{\sin^2x-\cos2x+1}=}
  1. \dfrac12
  2. -1
  3. -2
  1. 1
  2. 2
limx0xtan3xsin2xcos2x+1=limx0xtan3xsin2x(12sin2x)+1=limx0xtan3xsin2x1+2sin2x+1=limx0xtan3x3sin2x=limx013xsinxtan3xsinx=1313=1

No. 15

\displaystyle\lim_{x\to0}\dfrac{\sin3x}{5x}
\displaystyle\lim_{x\to0}\dfrac{\sin3x}{5x}=\boxed{\boxed{\dfrac35}}

No. 16

\displaystyle\lim_{x\to0}\dfrac{4\tan5x}{3x}
\displaystyle\lim_{x\to0}\dfrac{4\tan5x}{3x}=\dfrac{4\cdot5}3=\boxed{\boxed{\dfrac{20}3}}

No. 17

Tentukan nilai dari \displaystyle\lim_{x\to0}\dfrac{2-2\cos2x}{x^2}
limx022cos2xx2=limx022(12sin2x)x2=limx022+4sin2xx2=limx04sin2xx2=limx04sinxxsinxx=411=4

No. 18

Nilai dari \displaystyle\lim_{x\to4}\dfrac{x^2-16}{\sin(2x-8)}
limx4x216sin(2x8)=limx4(x+4)(x4)sin2(x4)=limx4(x+4)limx4x4sin2(x4)
Misal t=x-4
Jika x\to4 maka t=x-4\to4-4=0

limx4(x+4)limx4x4sin2(x4)=(4+4)limt0tsin2t=(8)12=4

No. 19

\displaystyle\lim_{x\to0}\dfrac{1-\cos4x}{x\sin x}=
limx01cos4xxsinx=limx01(12sin22x)xsinx=limx011+2sin22xxsinx=limx02sin22xxsinx=limx0(2sin2xxsin2xsinx)=222=8


  • 1
  • 2

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas