Berikut ini adalah kumpulan soal mengenai
Limit . Jika ingin bertanya soal, silahkan gabung ke grup
Telegram ,
Signal ,
Discord , atau
WhatsApp .
No. {\displaystyle\lim_{x\to2}\dfrac{x^n-2^n}{x^{\frac{n}3}-2^{\frac{n}3}}=3\sqrt[3]{16}} , tentukan nilai
n
Alternatif Penyelesaian
CARA 1 : PEMFAKTORAN \begin{aligned}
\displaystyle\lim_{x\to2}\dfrac{x^n-2^n}{x^{\frac{n}3}-2^{\frac{n}3}}&=3\sqrt[3]{16}\\
\displaystyle\lim_{x\to2}\dfrac{\left(x^{\frac{n}3}\right)^3-\left(2^{\frac{n}3}\right)^3}{x^{\frac{n}3}-2^{\frac{n}3}}&=3\sqrt[3]{16}\\
\displaystyle\lim_{x\to2}\dfrac{\left(x^{\frac{n}3}-2^{\frac{n}3}\right)\left(x^{\frac{2n}3}+x^{\frac{n}3}2^{\frac{n}3}+2^{\frac{2n}3}\right)}{x^{\frac{n}3}-2^{\frac{n}3}}&=3\sqrt[3]{16}\\
\displaystyle\lim_{x\to2}\left(x^{\frac{2n}3}+x^{\frac{n}3}2^{\frac{n}3}+2^{\frac{2n}3}\right)&=3\sqrt[3]{16}\\
2^{\frac{2n}3}+2^{\frac{n}3}2^{\frac{n}3}+2^{\frac{2n}3}&=3\sqrt[3]{16}\\
2^{\frac{2n}3}+2^{\frac{2n}3}+2^{\frac{2n}3}&=3\sqrt[3]{16}\\
3\cdot2^{\frac{2n}3}&=3\sqrt[3]{16}\\
3\sqrt[3]{2^{2n}}&=3\sqrt[3]{16}\\
2^{2n}&=16\\
2n&=4\\
n&=\boxed{\boxed{2}}
\end{aligned}
CARA 2 : L'HOPITAL \begin{aligned}
\displaystyle\lim_{x\to2}\dfrac{x^n-2^n}{x^{\frac{n}3}-2^{\frac{n}3}}&=3\sqrt[3]{16}\\
\displaystyle\lim_{x\to2}\dfrac{nx^{n-1}}{\dfrac{n}3x^{\frac{n}3-1}}&=3\sqrt[3]{16}\\
\displaystyle\lim_{x\to2}3x^{n-\frac{n}3}&=3\sqrt[3]{16}\\
\displaystyle\lim_{x\to2}3x^{\frac{2n}3}&=3\sqrt[3]{16}\\
\displaystyle\lim_{x\to2}3\sqrt[3]{x^{2n}}&=3\sqrt[3]{16}\\
3\sqrt[3]{2^{2n}}&=3\sqrt[3]{16}\\
2^{2n}&=16\\
2n&=4\\
n&=\boxed{\boxed{2}}
\end{aligned}
No.
Diketahui
f(x)=\sqrt{x+3} . Nilai
\displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-3h^2\right)}{h^2}
adalah
\dfrac52
5\sqrt6
\dfrac5{12}\sqrt6
Penyelesaian
CARA BIASA
\(\eqalign{
\displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-3h^2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{\sqrt{3+2h^2+3}-\sqrt{3-3h^2+3}}{h^2}\\
&=\displaystyle\lim_{h\to0}\dfrac{\sqrt{6+2h^2}-\sqrt{6-3h^2}}{h^2}\cdot{\color{red}\dfrac{\sqrt{6+2h^2}+\sqrt{6-3h^2}}{\sqrt{6+2h^2}+\sqrt{6-3h^2}}}\\
&=\displaystyle\lim_{h\to0}\dfrac{\left(6+2h^2\right)-\left(6-3h^2\right)}{h^2\left(\sqrt{6+2h^2}+\sqrt{6-3h^2}\right)}\\
&=\displaystyle\lim_{h\to0}\dfrac{6+2h^2-6+3h^2}{h^2\left(\sqrt{6+2h^2}+\sqrt{6-3h^2}\right)}\\
&=\displaystyle\lim_{h\to0}\dfrac{5h^2}{h^2\left(\sqrt{6+2h^2}+\sqrt{6-3h^2}\right)}\\
&=\displaystyle\lim_{h\to0}\dfrac5{\sqrt{6+2h^2}+\sqrt{6-3h^2}}\\
&=\dfrac5{\sqrt{6+2(0)^2}+\sqrt{6-3(0)^2}}\\
&=\dfrac5{\sqrt6+\sqrt6}\\
&=\dfrac5{2\sqrt6}\cdot{\color{red}\dfrac{\sqrt6}{\sqrt6}}\\
&=\dfrac5{2(6)}\sqrt6\\
&=\boxed{\boxed{\dfrac5{12}\sqrt6}}
}\)
CARA CEPAT
f'(x)=\dfrac1{2\sqrt{x+3}}
\(\eqalign{
\displaystyle\lim_{h\to0}\dfrac{f\left(3+2h^2\right)-f\left(3-3h^2\right)}{h^2}&=\displaystyle\lim_{h\to0}\dfrac{4h\ f'\left(3+2h^2\right)-(-6h)\ f'\left(3-3h^2\right)}{2h}\\
&=\displaystyle\lim_{h\to0}\left(2\ f'\left(3+2h^2\right)+3\ f'\left(3-3h^2\right)\right)\\
&=2\ f'\left(3\right)+3\ f'\left(3\right)\\
&=5f'(3)\\
&=5\cdot\dfrac1{2\sqrt{3+3}}\\
&=\dfrac5{2\sqrt6}\cdot{\color{red}\dfrac{\sqrt6}{\sqrt6}}\\
&=\dfrac5{2(6)}\sqrt6\\
&=\boxed{\boxed{\dfrac5{12}\sqrt6}}
}\)
No.
Diketahui
f(x)=ax+b dengan
f^{-1}(11)=2 dan
f^{-1}(8)=1 dengan
f^{-1} menyatakan fungsi invers
f .
Nilai
\displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h= ....
Ganesha Operation
Penyelesaian
\begin{aligned}
f^{-1}(11)&=2\\
f(2)&=11\\
2a+b&=11
\end{aligned}
\begin{aligned}
f^{-1}(8)&=1\\
f(1)&=8\\
a+b&=8
\end{aligned}
\begin{aligned}
2a+b&=11\\
a+b&=8\qquad-\\\hline
a&=3
\end{aligned}
\begin{aligned}
a+b&=8\\
3+b&=8\\
b&=5
\end{aligned}
f(x)=3x+5
\begin{aligned}
\displaystyle\lim_{h\to0}\dfrac{(3+h)f(3)-3f(3+h)}h&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(3(3)+5)-3(3(3+h)+5)}h\\
&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(9+5)-3(9+3h+5)}h\\
&=\displaystyle\lim_{h\to0}\dfrac{(3+h)(14)-3(14+3h)}h\\
&=\displaystyle\lim_{h\to0}\dfrac{42+14h-42+9h}h\\
&=\displaystyle\lim_{h\to0}\dfrac{5h}h\\
&=\displaystyle\lim_{h\to0}5\\
&=\boxed{\boxed{5}}
\end{aligned}
No.
Jika nilai
\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax+b}-3}{x-1}=\dfrac23 , maka nilai
{8a + 2b} adalah
Alternatif Penyelesaian
Karena \displaystyle\lim_{x\to1}(x-1)=0 , maka
\(\eqalign{
\displaystyle\lim_{x\to1}\left(\sqrt{ax+b}-3\right)&=0\\
\displaystyle\lim_{x\to1}\sqrt{ax+b}&=3
}\)
\(\eqalign{
\displaystyle\lim_{x\to1}\dfrac{\sqrt{ax+b}-3}{x-1}&=\dfrac23\\
\displaystyle\lim_{x\to1}\dfrac{d\left(\sqrt{ax+b}-3\right)}{d(x-1)}&=\dfrac23\\
\displaystyle\lim_{x\to1}\dfrac{\dfrac{a}{2\sqrt{ax+b}}}1&=\dfrac23\\
\displaystyle\lim_{x\to1}\dfrac{a}{2\sqrt{ax+b}}&=\dfrac23\\
\dfrac{a}{2(3)}&=\dfrac23\\
\dfrac{a}6&=\dfrac23\\
a&=6\cdot\dfrac23\\
&=4
}\)
\(\eqalign{
\displaystyle\lim_{x\to1}\sqrt{ax+b}&=3\\
\sqrt{a(1)+b}&=3\\
a+b&=9\\
2a+2b&=18\\
6a+2a+2b&=6(4)+18\\
8a+2b&=24+18\\
&=\boxed{\boxed{42}}
}\)
No.
Jika
{\displaystyle\lim_{x\to2}\dfrac{\sqrt{ax^4+b}-1}{x-2}=3} maka nilai dari
{\displaystyle\lim_{x\to2}\dfrac{2\sqrt{ax^4+b}-x}{x^2+2x-8}=}
Alternatif Penyelesaian
Misal f(x)=\sqrt{ax^4+b}
\begin{aligned}
\displaystyle\lim_{x\to2}\dfrac{\sqrt{ax^4+b}-1}{x-2}&=3\\
\displaystyle\lim_{x\to2}\dfrac{f(x)-1}{x-2}&=3\\
\displaystyle\lim_{x\to2}\dfrac{f'(x)}1&=3\\
\displaystyle\lim_{x\to2}f'(x)&=3
\end{aligned}
\begin{aligned}
\displaystyle\lim_{x\to2}\dfrac{2\sqrt{ax^4+b}-x}{x^2+2x-8}&=\displaystyle\lim_{x\to2}\dfrac{2f(x)-x}{x^2+2x-8}\\
&=\displaystyle\lim_{x\to2}\dfrac{2f'(x)-1}{2x+2}\\
&=\dfrac{2(3)-1}{2(2)+2}\\
&=\dfrac{6-1}{4+2}\\
&=\boxed{\boxed{\dfrac56}}
\end{aligned}
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas