Exercise Zone : Trigonometri

Berikut ini adalah kumpulan soal mengenai Trigonometri. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:


No.

Sebuah tangga disandarkan pada tembol rumah dengan membentuk sudut 60\degree terhadap tanah. Jarak antara ujung tangga dan permukaan tanah adalah 2\sqrt3 m. Panjang tangga tersebut adalah .....
  1. 4 m
  2. 4{,}5 m
  3. 5 m
  1. 5{,}5 m
  2. 6 m
\begin{aligned} \sin60\degree&=\dfrac{2\sqrt3}x\\[8pt] \dfrac12\sqrt3&=\dfrac{2\sqrt3}x\\[8pt] x&=\dfrac{2\sqrt3}{\dfrac12\sqrt3}\\ &=\boxed{\boxed{4}} \end{aligned}

No.

Jika x-y=\dfrac12\pi maka \tan x adalah....
  1. \dfrac{1+\tan y^2}{y}
  2. -\dfrac{1-y^2}{\tan y}
  3. \dfrac{\tan(1-y)}{(1+y)^2}
  1. \dfrac{\tan y}{(1+y)^2}
  2. -\dfrac1{\tan y}
x=\dfrac12\pi+y

\begin{aligned} \tan x&=\tan\left(\dfrac12\pi+y\right)\\ &=-\cot y\\ &=-\dfrac1{\tan y} \end{aligned}

No.

Jika \sin13\degree=a, maka nilai {\cot257\degree+\csc257\degree=}
  1. \dfrac{a-1}{\sqrt{a^2-1}}
  2. \dfrac{1-a}{\sqrt{a^2-1}}
  3. \dfrac{a-1}{\sqrt{1-a^2}}
  1. \dfrac{1-a}{\sqrt{1-a^2}}
  2. \dfrac{-a-1}{\sqrt{1-a^2}}
\begin{aligned} \cot257\degree+\csc257\degree&=\cot\left(270\degree-13\degree\right)+\csc\left(270\degree-13\degree\right)\\ &=\tan13\degree-\sec13\degree\\ &=\dfrac{a}{\sqrt{1-a^2}}-\dfrac1{\sqrt{1-a^2}}\\ &=\boxed{\boxed{\dfrac{a-1}{\sqrt{1-a^2}}}} \end{aligned}

No.

Diketahui \cos\alpha = \dfrac{a}{2b}, dengan \alpha sudut lancip dan b\neq0. Nilai dari \tan\alpha=
  1. \dfrac{2b}a
  2. \dfrac{\sqrt{a^2-4b^2}}{2a}
  3. \dfrac{\sqrt{4b^2-a^2}}{2a}
  1. \dfrac{\sqrt{a^2-4b^2}}a
  2. \dfrac{\sqrt{4b^2-a^2}}a
\cos\alpha = \dfrac{a}{2b}=\dfrac{sa}{mi}
sa=a, mi=2b

\begin{aligned} de&=\sqrt{(2b)^2-a^2}\\ &=\sqrt{4b^2-a^2} \end{aligned}

\begin{aligned} \tan\alpha&=\dfrac{de}{sa}\\ &=\boxed{\boxed{\dfrac{\sqrt{4b^2-a^2}}a}} \end{aligned}

No.

Jika \theta sudut lancip dan {\cos\theta=\dfrac35}, maka nilai dari \dfrac{\sin\theta\tan\theta-1}{2\tan^2\theta} adalah
\sin\theta=\dfrac45

\tan\theta=\dfrac43

\(\eqalign{ \dfrac{\sin\theta\tan\theta-1}{2\tan^2\theta}&=\dfrac{\left(\dfrac45\right)\left(\dfrac43\right)-1}{2\left(\dfrac43\right)^2}\\ &=\dfrac{\dfrac{16}{15}-1}{2\left(\dfrac{16}9\right)}\\ &=\dfrac{\dfrac1{15}}{\dfrac{32}9}\\ &=\dfrac1{15}\cdot\dfrac9{32}\\ &=\boxed{\boxed{\dfrac3{160}}} }\)

No.

6\cos x\sin4x= ...
\(\eqalign{ 6\cos x\sin4x&=3\left(2\sin4x\cos x\right)\\ &=3\left(\sin(4x+x)+\sin(4x-x)\right)\\ &=3\left(\sin5x+\sin3x\right)\\ &=\boxed{\boxed{3\sin5x+3\sin3x}} }\)

No.

Diketahui \sin \alpha=\dfrac45, 0 \lt \alpha \lt \dfrac{\pi}2 dan \cos\beta =\dfrac{12}{13}, -\dfrac{\pi}2\lt\beta\lt0 Tentukan nilai \sin (\alpha+\beta) dan \sin (\alpha-\beta).
\alpha kuadran I dan \beta kuadran II

\cos\alpha=\dfrac35, \sin\beta=-\dfrac5{13}

\(\eqalign{ \sin (\alpha+\beta)&=\sin\alpha\cos\beta+\cos\alpha\sin\beta\\ &=\dfrac45\cdot\dfrac{12}{13}+\dfrac35\cdot\left(-\dfrac5{13}\right)\\ &=\dfrac{48}{65}-\dfrac{15}{65}\\ &=\boxed{\boxed{\dfrac{33}{65}}} }\)

\(\eqalign{ \sin (\alpha-\beta)&=\sin\alpha\cos\beta-\cos\alpha\sin\beta\\ &=\dfrac45\cdot\dfrac{12}{13}-\dfrac35\cdot\left(-\dfrac5{13}\right)\\ &=\dfrac{48}{65}+\dfrac{15}{65}\\ &=\boxed{\boxed{\dfrac{63}{65}}} }\)

No.

Segitiga ABC siku siku di C jika panjang {AC = 20} cm dan besar sudut A = 60\degree tentukan panjang BC!​
\begin{aligned}\tan60\degree&=\dfrac{BC}{AC}\\\sqrt3&=\dfrac{BC}{20}\\BC&=\boxed{\boxed{20\sqrt3}}\end{aligned}

No.

Jika \sin13\degree=a, maka nilai \cot257\degree+\csc257\degree=
  1. \dfrac{a-1}{\sqrt{a^2-1}}
  2. \dfrac{1-a}{\sqrt{a^2-1}}
  3. \dfrac{a-1}{\sqrt{1-a^2}}
  1. \dfrac{1-a}{\sqrt{1-a^2}}
  2. \dfrac{-a-1}{\sqrt{1-a^2}}
\begin{aligned} \cot257\degree+\csc257\degree&=\cot\left(270\degree-13\degree\right)+\csc\left(270\degree-13\degree\right)\\ &=\tan13\degree-\sec13\degree\\ &=\dfrac{a}{\sqrt{1-a^2}}-\dfrac1{\sqrt{1-a^2}}\\ &=\boxed{\boxed{\dfrac{a-1}{\sqrt{1-a^2}}}} \end{aligned}

No.

Diketahui \cos\alpha = \dfrac{a}{2b}, dengan \alpha sudut lancip dan b\neq0. Nilai dari \tan\alpha=
  1. \dfrac{2b}a
  2. \dfrac{\sqrt{a^2-4b^2}}{2a}
  3. \dfrac{\sqrt{4b^2-a^2}}{2a}
  1. \dfrac{\sqrt{a^2-4b^2}}a
  2. \dfrac{\sqrt{4b^2-a^2}}a
\cos\alpha = \dfrac{a}{2b}=\dfrac{sa}{mi}
sa=a, mi=2b

\begin{aligned} de&=\sqrt{(2b)^2-a^2}\\ &=\sqrt{4b^2-a^2} \end{aligned}

\begin{aligned} \tan\alpha&=\dfrac{de}{sa}\\ &=\boxed{\boxed{\dfrac{\sqrt{4b^2-a^2}}a}} \end{aligned}


0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas