Berikut ini adalah kumpulan soal mengenai Kurva Fungsi tipe HOTS. Jika ingin bertanya soal, silahkan gabung ke grup 
Facebook atau 
Telegram.
No. 1
Diberikan dua kurva 
{y=2x^3+6x+1} dan 
{y=-\dfrac3{x^2}} dengan koordinat kartesius. Banyaknya titik potong kedua kurva tersebut untuk domain real adalah ....
\begin{aligned}
y&=2x^3+6x+1\\
&=2x^3\left(1+\dfrac3{x^2}+\dfrac1{2x^3}\right)\\[8pt]
&=2x^3\left(1-y+\dfrac1{2x^3}\right)
\end{aligned}
Misal 
{2x^3=p}
\begin{aligned}
y&=p\left(1-y+\dfrac1p\right)\\[8pt]
y&=p-py+1\\
y-p+py-1&=0\\
(y-1)(p+1)&=0
\end{aligned}
- {y=1}
 -\dfrac3{x^2}=1
 x^2 positif sehingga -\dfrac3{x^2} negatif.
 Tidak ada yang memenuhi
- {p=-1}
 \begin{aligned}
 2x^3&=-1\\
 x^3&=-\dfrac12\\[8pt]
 x&=-\dfrac1{\sqrt[3]{2}}
 \end{aligned}
 
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas