Berikut ini adalah kumpulan soal mengenai Integral Trigonometri Tak Tentu tipe standar. Jika ingin bertanya soal, silahkan gabung ke grup
Facebook atau
Telegram .
No. 1 Hasil dari
\displaystyle\int\sin^3x\ dx adalah ....
{-\dfrac13\cos^3x+C}
{-\cos x-\dfrac13\sin^3x+C}
{\cos x-\dfrac13\sin^3x+C}
{-\cos x+\dfrac13\cos^3x+C}
{-\dfrac13\sin^3x+C}
Alternatif Penyelesaian \(\begin{aligned}
\displaystyle\int\sin^3x\ dx&=\displaystyle\int\sin x\sin^2x\ dx\\
&=\displaystyle\int\sin x\left(1-\cos^2x\right)\ dx\\
&=\displaystyle\int\left(\sin x-\sin x\cos^2x\right)\ dx\\
&=\displaystyle\int \sin x\ dx-\displaystyle\int\sin x\cos^2x\ dx\\
\end{aligned}\)
Misal
\(\begin{aligned}
u&=\cos x\\
du&=-\sin x\ dx\\
dx&=\dfrac{du}{-\sin x}
\end{aligned}\)
\(\begin{aligned}
\displaystyle\int \sin x\ dx-\displaystyle\int\sin x\cos^2x\ dx&=-\cos x-\displaystyle\int\sin x\cdot u^2\ \dfrac{du}{-\sin x}\\[8pt]
&=-\cos x+\displaystyle\int u^2\ du\\
&=-\cos x+\dfrac13u^3+C\\
&=\boxed{\boxed{-\cos x+\dfrac13\cos^3x+C}}
\end{aligned}\)
No. 2 \displaystyle\int\sin x\left(1-\sin^2x\right)\ dx= ....
{\cos x-\dfrac13\cos^3x+C}
{\cos x-\dfrac13\sin^3x+C}
{-\dfrac13\cos^3x+C}
{-\dfrac13\sin^3x+C}
{-\cos x-\dfrac13\sin^3x+C}
Alternatif Penyelesaian \displaystyle\int\sin x\left(1-\sin^2x\right)\ dx=\displaystyle\int\sin x\cos^2x\ dx
Misal
\(\begin{aligned}
u&=\cos x\\
du&=-\sin x\ dx\\
dx&=\dfrac{du}{-\sin x}
\end{aligned}\)
\(\begin{aligned}
\displaystyle\int\sin x\cos^2x\ dx&=\displaystyle\int\sin x\cdot u^2\ \dfrac{du}{-\sin x}\\[8pt]
&=-\displaystyle\int\cdot u^2\ du\\
&=-\dfrac13u^3+C\\
&=\boxed{\boxed{-\dfrac13\cos^3x+C}}
\end{aligned}\)
No. 3
\displaystyle\int6\sec^2(2\pi-4x)\ dx= ...
Alternatif Penyelesaian
\(\eqalign{
\displaystyle\int6\sec^2(2\pi-4x)\ dx&=6\cdot\dfrac1{-4}\tan(2\pi-4x)+C\\
&=\boxed{\boxed{-\dfrac32\tan(2\pi-4x)+C}}
}\)
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas