SBMPTN Zone : Persamaan Logaritma

Berikut ini adalah kumpulan soal mengenai persamaan logaritma Tipe SBMPTN. Jika ingin bertanya soal, silahkan gabung ke grup Facebook atau Telegram.

Tipe:


No. 1

Jika x_1 dan x_2 memenuhi \left(^{(x-1)}\log4\right)^2=4, maka nilai {x_1+x_2} adalah
  1. 3
  2. 3\dfrac12
  3. 4
  1. 4\dfrac12
  2. 5
Syarat:
\(\begin{aligned} x-1&\gt0\\ x&\gt1 \end{aligned}\)

\(\begin{aligned} \left(^{(x-1)}\log4\right)^2&=4\\ ^{(x-1)}\log4&=\pm2 \end{aligned}\)
\(\begin{aligned} ^{(x-1)}\log4&=2\\ (x-1)^2&=4\\ x^2-2x+1&=4\\ x^2-2x-3&=0\\ (x+1)(x-3)&=0 \end{aligned}\)
x=-1 (PM) atau \boxed{x=3}
\(\begin{aligned} ^{(x-1)}\log4&=-2\\ (x-1)^{-2}&=4\\ \dfrac1{(x-1)^2}&=4\\ (x-1)^2&=\dfrac14\\ x^2-2x+1&=\dfrac14\\ 4x^2-8x+4&=1\\ 4x^2-8x+3&=0\\ (2x-1)(2x-3)&=0 \end{aligned}\)
x=\dfrac12 (PM) atau \boxed{x=\dfrac32=1\dfrac12}

\(\begin{aligned} x_1+x_2&=3+1\dfrac12\\ &=\color{blue}{\boxed{\boxed{\color{black}{4\dfrac12}}}} \end{aligned}\)

No. 2

Jika x_1 dan x_2 memenuhi \left({^{x-2}\log}9\right)^2=4, maka nilai x_1+x_2 adalah ....
Ganesha Operation
\(\begin{aligned} \left({^{x-2}\log}9\right)^2&=4\\ {^{x-2}\log}9&=\pm2\\ x-2&=9^{\pm\frac12} \end{aligned}\)

  • x_1-2=9^{\frac12}
    \(\begin{aligned} x_1&=2+3\\ &=5 \end{aligned}\)
  • x_2-2=9^{-\frac12}
    \(\begin{aligned} x_2&=2+\dfrac13\\ &=2\dfrac13 \end{aligned}\)
x_1+x_2=5+2\dfrac13=7\dfrac13

No. 3

Jika x_1 dan x_2 memenuhi {\left({^{27}\negthinspace\log}\dfrac1{x+1}\right)^2=\dfrac19}, maka nilai x_1x_2 adalah ....
  1. \dfrac53
  2. \dfrac43
  3. \dfrac13
  1. -\dfrac23
  2. -\dfrac43
SBMPTN 2018 Kode 517
\(\begin{aligned} \left({^{27}\negthinspace\log}\dfrac1{x+1}\right)^2&=\dfrac19\\[8pt] {^{27}\negthinspace\log}\dfrac1{x+1}&=\pm\dfrac13\\[8pt] \dfrac1{x+1}&=27^{\pm\frac13}\\ &=\left(3^3\right)^{\pm\frac13}\\ &=3^{\pm1}\\ x+1&=\dfrac1{3^{\pm1}}\\ x&=-1+\dfrac1{3^{\pm1}} \end{aligned}\)

\(\begin{aligned} x_1&=-1+\dfrac13\\ &=-\dfrac23 \end{aligned}\)

\(\begin{aligned} x_2&=-1+\dfrac1{3^{-1}}\\ &=-1+3\\ &=2 \end{aligned}\)

\(\begin{aligned} x_1x_2&=\left(-\dfrac23\right)(2)\\ &=-\dfrac43 \end{aligned}\)

No. 4

Jika ^3\negthinspace\log p+{^9\negthinspace\log q} = 5 dan ^9\negthinspace\log q^8 +{^3\negthinspace\log p^5} = 11, maka nilai dari ^q\negthinspace\log p^2 adalah ....
  1. 6\ ^3\negthinspace\log p
  2. 6\ ^3\negthinspace\log q
  3. 3\ ^3\negthinspace\log p
  1. -3\ ^3\negthinspace\log q
  2. -3\ ^3\negthinspace\log q
http://www.learncy.net/problem/166/
\(\begin{aligned} ^9\negthinspace\log q^8 +{^3\negthinspace\log p^5}&=11\\ 8\ ^9\negthinspace\log q+5\ ^3\negthinspace\log p&=11\\ 5\ ^9\negthinspace\log q+5\ ^3\negthinspace\log p&=25\qquad-\\\hline 3\ ^9\negthinspace\log q&=-14\\ ^9\negthinspace\log q&=-\dfrac{14}3 \end{aligned}\)

\(\begin{aligned} ^q\negthinspace\log p^2&=\dfrac{^9\negthinspace\log p^2}{^9\negthinspace\log q}\\ &=\dfrac{^{3^2}\negthinspace\log p^2}{-\dfrac{14}3}\\ \end{aligned}\)

No. 5

Jika xy= 90 dan \log x-\log y= 1, maka x-y= ....
  1. 27
  2. 25
  3. -26
  1. 19
  2. 20
Syarat:
  • x\gt0
  • y\gt0

\(\begin{aligned} \log x-\log y&= 1\\ \log\dfrac{x}y&=\log10\\ \dfrac{x}y&=10\\ x&=10y \end{aligned}\)

\(\begin{aligned} xy&=90\\ (10y)y&=90\\ 10y^2&=90\\ y^2&=9\\ y&=\boxed{3} \end{aligned}\)

\(\begin{aligned} x&=10y\\ &=10(3)\\ &=\boxed{30} \end{aligned}\)

\(\begin{aligned} x-y&=30-3\\ &=\boxed{\boxed{27}} \end{aligned}\)

No. 6

Jika \(\log\left(x^2\right)+\log\left(10x^2\right)+\log\left(10^2x^2\right)+\cdots+\log\left(10^9x^2\right)=55\), maka x= ....
\(\begin{aligned} \log\left(x^2\right)+\log\left(10x^2\right)+\log\left(10^2x^2\right)+\cdots+\log\left(10^9x^2\right)&=55\\ \log\left(x^2\cdot10x^2\cdot10^2x^2\cdots10^9x^2\right)&=55\\ \log\left(10^{1+2+\cdots+9}x^{20}\right)&=55\\ \log\left(10^{45}x^{20}\right)&=55\\ 10^{45}x^{20}&=10^{55}\\ x^{20}&=\dfrac{10^{55}}{10^{45}}\\ &=10^{10}\\ x&=10^{\frac{10}{20}}\\ &=10^{\frac12}\\ &=\boxed{\boxed{\sqrt{10}}} \end{aligned}\)

No. 7

Penyelesaian dari (2x)^{1+\log_22x}\geq64x^3 adalah
  1. 0\lt x\leq\dfrac14
  2. \dfrac14\leq x\leq4
  3. x\leq\dfrac14 atau x\geq4
  1. 0\lt x\leq\dfrac14 atau x\geq4
  2. \dfrac14\leq x\leq2 atau x\gt4
\(\begin{aligned} (2x)^{1+\log_22x}&\geq64x^3\\ \log_2\left((2x)^{1+\log_22x}\right)&\geq\log_264x^3\\ \left(1+\log_22x\right)\log_22x&\geq\log_2\left(8\cdot8x^3\right)\\ \log_22x+{\log_2}^22x&\geq\log_28+\log_28x^3\\ {\log_2}^22x+\log_22x&\geq3+\log_2(2x)^3\\ {\log_2}^22x+\log_22x&\geq3+3\log_22x \end{aligned}\)
Misal \log_22x=p
\(\begin{aligned} p^2+p&\geq3+3p\\ p^2-2p-3&\geq0\\ (p+1)(p-3)&\geq0 \end{aligned}\)
p\leq-1ataup\geq3
\log_22x\leq-1atau\log_22x\geq3
2x\leq2^{-1}atau2x\geq2^3
2x\leq\dfrac12atau2x\geq8
x\leq\dfrac14ataux\geq4

Syarat:
  • 2x\gt0
    x\gt0
  • 2x\neq1
    x\neq\dfrac12


0\lt x\leq\dfrac14 atau x\geq4

No. 8

Jika x memenuhi persamaan {{^5\negmedspace\log 5x} + {^4\negmedspace\log 4x} = {^{25}\negmedspace\log 25x^2}} maka nilai {^x\negmedspace\log 4} =
  1. \dfrac12
  2. -2
  3. 2
  1. 1
  2. -1
\(\eqalign{ {^5\negmedspace\log 5x} + {^4\negmedspace\log 4x} &= {^{25}\negmedspace\log 25x^2}\\ {^5\negmedspace\log 5x} + {^4\negmedspace\log 4}+{^4\negmedspace\log x} &= {^{5^2}\negmedspace\log (5x)^2}\\ {^5\negmedspace\log 5x} + 1+{^4\negmedspace\log x} &= {^5\negmedspace\log 5x}\\ 1+{^4\negmedspace\log x} &=0\\ {^4\negmedspace\log x} &=\boxed{\boxed{-1}} }\)

No. 9

Jika {{^4\negmedspace\log \sqrt{x}}+ {^2\negmedspace\log y}={^4\negmedspace\log z^2}}, maka z^2 =
  1. x\sqrt{y}
  2. \sqrt{x}y
  3. \sqrt{x}y^2
  1. x^2\sqrt{y}
  2. xy
\(\eqalign{ {^4\negmedspace\log \sqrt{x}}+ {^2\negmedspace\log y}&={^4\negmedspace\log z^2}\\ {^4\negmedspace\log \sqrt{x}}+ {^{2^2}\negmedspace\log y^2}&={^4\negmedspace\log z^2}\\ {^4\negmedspace\log \sqrt{x}}+ {^4\negmedspace\log y^2}&={^4\negmedspace\log z^2}\\ {^4\negmedspace\log \sqrt{x}y^2}&={^4\negmedspace\log z^2}\\ \sqrt{x}y^2&=z^2\\ z^2&=\boxed{\boxed{\sqrt{x}y^2}} }\)

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas