Misal
$\eqalign{
s&=8+\dfrac{16}3+\dfrac83+\dfrac{32}{27}+\dfrac{40}{81}+\cdots\\
s&=8+\dfrac{16}3+\dfrac{24}9+\dfrac{32}{27}+\dfrac{40}{81}+\cdots\\
s&=8+\dfrac{16}3+\dfrac{24}{3^2}+\dfrac{32}{3^3}+\dfrac{40}{3^4}+\cdots\\
\dfrac13s&=\dfrac83+\dfrac{16}{3^2}+\dfrac{24}{3^3}+\dfrac{32}{3^4}+\dfrac{40}{3^5}+\cdots&\qquad-\\\hline
\dfrac23s&=8+\dfrac83+\dfrac8{3^2}+\dfrac8{3^3}+\dfrac8{3^4}+\cdots\\
&=\dfrac8{1-\dfrac13}\\
&=\dfrac8{\dfrac23}\\
&=12\\
s&=12\cdot\dfrac32\\
a\times\dfrac67&=18\\
a&=18\cdot\dfrac76\\
&=\boxed{\boxed{21}}
}$
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas