Exercise Zone : Integral Lipat

Berikut ini adalah kumpulan soal mengenai Integral Lipat. Jika ingin bertanya soal, silahkan gabung ke grup Telegram.

Tipe:


No. 1

\displaystyle\intop_0^4\intop_{\pi}^{\frac{3\pi}2}x\sin(xy)\ dx\ dy
Misal:

u=xdu=dx
dv=sin(xy) dxv=1ycos(xy)

u dv=uvv duxsin(xy) dx=x(1ycos(xy))(1ycos(xy)) dx=xcos(xy)y+1ycos(xy) dx=xcos(xy)y+sin(xy)y2+C=1y2(xycos(xy)+sin(xy))+C

04π3π2xsin(xy) dx dy=041y2[xycos(xy)+sin(xy)]π3π2 dy=041y2[(3π2ycos(3π2y)+sin(3π2y))(πycos(πy)+sin(πy))] dy=04(3π2ycos(3π2y)+sin(3π2y)+πycos(πy)sin(πy))1y2 dy=04((3π2ycos(3π2y)+sin(3π2y))1y2+(πycos(πy)sin(πy))1y2) dy

udv
-\dfrac{3\pi}2y\cos\left(\dfrac{3\pi}2y\right)+\sin\left(\dfrac{3\pi}2y\right)\dfrac1{y^2}=y^{-2}
-\dfrac{3\pi}2\cos\left(\dfrac{3\pi}2y\right)+\left(-\dfrac{3\pi}2y\right)\left(-\dfrac{3\pi}2\sin\left(\dfrac{3\pi}2y\right)\right)+\dfrac{3\pi}2\cos\left(\dfrac{3\pi}2y\right)=\dfrac{9\pi^2}4y\sin\left(\dfrac{3\pi}2y\right)\dfrac1{-1}y^{-1}=-\dfrac1y
(3π2ycos(3π2y)+sin(3π2y))1y2 dy=(3π2ycos(3π2y)+sin(3π2y))(1y)(1y)(9π24ysin(3π2y)) dy=3π2cos(3π2y)sin(3π2y)y+9π24sin(3π2y) dy=3π2cos(3π2y)sin(3π2y)y+9π24(23πcos(3π2y))+C=3π2cos(3π2y)sin(3π2y)y3π2cos(3π2y)+C=sin(3π2y)y+C

{\displaystyle\int\left(\pi y\cos \pi y+\sin \pi y\right)\dfrac1{y^2}\ dy=\dfrac{\sin \pi y}y+C}

04((3π2ycos(3π2y)+sin(3π2y))1y2+(πycos(πy)sin(πy))1y2) dy=[sin(3π2y)+sinπyy]04=sin(3π2(4))+sinπ(4)4limy0(sin(3π2y)+sinπyy)=sin6π+sin4π4(3π2+π)=0+04(π2)=0+π2=π2

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas