Berikut ini adalah kumpulan soal mengenai
Fungsi. Jika ingin bertanya soal, silahkan gabung ke grup
Telegram,
Signal,
Discord, atau
WhatsApp.
No.
Jika
f adalah fungsi yang memenuhi
f(n)=f(n-1)+\dfrac{n}{2018} untuk setiap
n bilangan asli dan
f(0)=\dfrac{2017}2, maka nilai
f(2018) adalah ....
\begin{aligned}
f(n)&=f(n-1)+\dfrac{n}{2018}\\
&=f(n-2)+\dfrac{n-1}{2018}+\dfrac{n}{2018}\\
&=f(n-3)+\dfrac{n-2}{2018}+\dfrac{n-1}{2018}+\dfrac{n}{2018}\\
&=\cdots\\
&=f(0)+\dfrac{1+2+\cdots+n}{2018}\\
&=\dfrac{2017}2+\dfrac{\dfrac12n(n+1)}{2018}\\
&=\dfrac{2017}2+\dfrac{n(n+1)}{2\cdot2018}\\
f(2018)&=\dfrac{2017}2+\dfrac{2018(2018+1)}{2\cdot2018}\\
&=\dfrac{2017}2+\dfrac{2019}2\\
&=2018
\end{aligned}
No.
Diketahui suatu fungsi
f bersifat
f(-x)=-f(x) untuk setiap bilangan real
x. Jika
f(4)=-7 dan
f(-7)=5, maka nilai
f(f(4))=
\begin{aligned}
f(f(-4))&=f(-f(4))\\
&=f(-(-7))\\
&=-f(-7)\\
&=-5
\end{aligned}
No.
Diberikan fungsi
f : \mathbb{R}\rightarrow\mathbb{R} yang memenuhi
f(2019x) = x. Nilai dari
f(1) adalah
kita cari nilai x sedemikian sehingga 2019x=1, didapat x=\dfrac1{2019}.
No.
Diketahui fungsi bilangan real
f(x)=\dfrac{x}{1-x}, untuk
x\neq-1. Nilai dari
f(2016)+f(2015)+\cdots+f(3)+f(2)+f\left(\dfrac12\right)+f\left(\dfrac13\right)+\cdots+f\left(\dfrac1{2015}\right)+f\left(\dfrac1{2016}\right)
adalah
\begin{aligned}
f\left(\dfrac1x\right)&=\dfrac{\dfrac1x}{1-\dfrac1x}\cdot\dfrac{x}x\\[8pt]
&=\dfrac1{x-1}
\end{aligned}
\begin{aligned}
f(x)+f\left(\dfrac1x\right)&=\dfrac{x}{1-x}+\dfrac1{x-1}\\[8pt]
&=\dfrac{x}{1-x}-\dfrac1{1-x}\\[8pt]
&=\dfrac{x-1}{1-x}\\
&=-1
\end{aligned}
\begin{aligned}
f(2016)+f(2015)+\cdots+f(3)+f(2)+f\left(\dfrac12\right)+f\left(\dfrac13\right)+\cdots+f\left(\dfrac1{2015}\right)+f\left(\dfrac1{2016}\right)&=2015\cdot(-1)\\
&=-2015
\end{aligned}
No.
Diberikan fungs!
{f(x)=\dfrac1{2021^x+\sqrt{2021}}} untuk setiap bilangan real
x. Nllai dari
{\displaystyle\sum_{x=-2020}^{2021}f(x)=} ....
-
\dfrac1{2021}
-
\dfrac1{2021}\sqrt{2021}
-
1
\begin{aligned}
f(1-x)&=\dfrac1{2021^{1-x}+\sqrt{2021}}\\
&=\dfrac1{\dfrac{2021}{2021^x}+\sqrt{2021}}{\color{red}\cdot\dfrac{2021^x}{2021^x}}\\
&=\dfrac{2021^x}{2021+2021^x\sqrt{2021}}\\
\end{aligned}
\begin{aligned}
f(x)+f(1-x)&=\dfrac1{2021^x+\sqrt{2021}}{\color{red}\cdot\dfrac{\sqrt{2021}}{\sqrt{2021}}}+\dfrac{2021^x}{2021+2021^x\sqrt{2021}}\\
&=\dfrac{\sqrt{2021}}{2021^x\sqrt{2021}+2021}+\dfrac{2021^x}{2021^x\sqrt{2021}+2021}\\
&=\dfrac{\sqrt{2021}+2021^x}{2021^x\sqrt{2021}+2021}{\color{red}\cdot\dfrac{\sqrt{2021}\cdot\sqrt{2021}}{2021}}\\
&=\dfrac{2021+2021^x\sqrt{2021}}{2021+2021^x\sqrt{2021}}\cdot\dfrac{\sqrt{2021}}{2021}\\
&=\dfrac{\sqrt{2021}}{2021}
\end{aligned}
\begin{aligned}
\displaystyle\sum_{x=-2020}^{2021}f(x)&=f(-2020)+f(-2019)+\cdots+f(2020)+f(2021)\\
&=\left(f(-2020)+f(2021)\right)+\left(f(-2019)+f(2020)\right)+\cdots+\left(f(0)+f(1)\right)\\
&=2021\cdot\dfrac{\sqrt{2021}}{2021}\\
&=\boxed{\boxed{\sqrt{2021}}}
\end{aligned}
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas