Berikut ini adalah kumpulan soal mengenai 
Fungsi. Jika ingin bertanya soal, silahkan gabung ke grup 
Telegram, 
Signal, 
Discord, atau 
WhatsApp.
  
        
              
        
        No. 
        Jika 
f adalah fungsi yang memenuhi 
f(n)=f(n-1)+\dfrac{n}{2018} untuk setiap 
n bilangan asli dan 
f(0)=\dfrac{2017}2, maka nilai 
f(2018) adalah ....
        
          
        
        
        
        \begin{aligned}
        f(n)&=f(n-1)+\dfrac{n}{2018}\\
        &=f(n-2)+\dfrac{n-1}{2018}+\dfrac{n}{2018}\\
        &=f(n-3)+\dfrac{n-2}{2018}+\dfrac{n-1}{2018}+\dfrac{n}{2018}\\
        &=\cdots\\
        &=f(0)+\dfrac{1+2+\cdots+n}{2018}\\
        &=\dfrac{2017}2+\dfrac{\dfrac12n(n+1)}{2018}\\
        &=\dfrac{2017}2+\dfrac{n(n+1)}{2\cdot2018}\\
        f(2018)&=\dfrac{2017}2+\dfrac{2018(2018+1)}{2\cdot2018}\\
        &=\dfrac{2017}2+\dfrac{2019}2\\
        &=2018
        \end{aligned}
        
         
         
        No. 
          Diketahui suatu fungsi 
f bersifat 
f(-x)=-f(x) untuk setiap bilangan real 
x. Jika 
f(4)=-7 dan 
f(-7)=5, maka nilai 
f(f(4))=
        
          
        
        
        
        \begin{aligned}
        f(f(-4))&=f(-f(4))\\
        &=f(-(-7))\\
        &=-f(-7)\\
        &=-5
        \end{aligned}
        
         
         
        No. 
          Diberikan fungsi 
f : \mathbb{R}\rightarrow\mathbb{R} yang memenuhi 
f(2019x) = x. Nilai dari 
f(1) adalah
        
        
          
        
        
        kita cari nilai x sedemikian sehingga 2019x=1, didapat x=\dfrac1{2019}.
        
         
         
        No. 
          Diketahui fungsi bilangan real 
f(x)=\dfrac{x}{1-x}, untuk 
x\neq-1. Nilai dari 
f(2016)+f(2015)+\cdots+f(3)+f(2)+f\left(\dfrac12\right)+f\left(\dfrac13\right)+\cdots+f\left(\dfrac1{2015}\right)+f\left(\dfrac1{2016}\right)
 adalah
        
        
          
        
        
        
        \begin{aligned}
        f\left(\dfrac1x\right)&=\dfrac{\dfrac1x}{1-\dfrac1x}\cdot\dfrac{x}x\\[8pt]
        &=\dfrac1{x-1}
        \end{aligned}
        
        \begin{aligned}
        f(x)+f\left(\dfrac1x\right)&=\dfrac{x}{1-x}+\dfrac1{x-1}\\[8pt]
        &=\dfrac{x}{1-x}-\dfrac1{1-x}\\[8pt]
        &=\dfrac{x-1}{1-x}\\
        &=-1
        \end{aligned}
        
        \begin{aligned}
        f(2016)+f(2015)+\cdots+f(3)+f(2)+f\left(\dfrac12\right)+f\left(\dfrac13\right)+\cdots+f\left(\dfrac1{2015}\right)+f\left(\dfrac1{2016}\right)&=2015\cdot(-1)\\
        &=-2015
        \end{aligned}
        
         
         
        
          
          No. 
          Diberikan fungs! 
{f(x)=\dfrac1{2021^x+\sqrt{2021}}} untuk setiap bilangan real 
x. Nllai dari 
{\displaystyle\sum_{x=-2020}^{2021}f(x)=} .... 
          
            
              
                - 
                  \dfrac1{2021}
                
- 
                  \dfrac1{2021}\sqrt{2021}
                
- 
                  1
                
 
            
           
          
          
          
            
              
                \begin{aligned}
                  f(1-x)&=\dfrac1{2021^{1-x}+\sqrt{2021}}\\
                  &=\dfrac1{\dfrac{2021}{2021^x}+\sqrt{2021}}{\color{red}\cdot\dfrac{2021^x}{2021^x}}\\
                  &=\dfrac{2021^x}{2021+2021^x\sqrt{2021}}\\
                  \end{aligned}
                  \begin{aligned}
                    f(x)+f(1-x)&=\dfrac1{2021^x+\sqrt{2021}}{\color{red}\cdot\dfrac{\sqrt{2021}}{\sqrt{2021}}}+\dfrac{2021^x}{2021+2021^x\sqrt{2021}}\\
                    &=\dfrac{\sqrt{2021}}{2021^x\sqrt{2021}+2021}+\dfrac{2021^x}{2021^x\sqrt{2021}+2021}\\
                    &=\dfrac{\sqrt{2021}+2021^x}{2021^x\sqrt{2021}+2021}{\color{red}\cdot\dfrac{\sqrt{2021}\cdot\sqrt{2021}}{2021}}\\
                    &=\dfrac{2021+2021^x\sqrt{2021}}{2021+2021^x\sqrt{2021}}\cdot\dfrac{\sqrt{2021}}{2021}\\
                    &=\dfrac{\sqrt{2021}}{2021}
                    \end{aligned}
                    \begin{aligned}
                      \displaystyle\sum_{x=-2020}^{2021}f(x)&=f(-2020)+f(-2019)+\cdots+f(2020)+f(2021)\\
                      &=\left(f(-2020)+f(2021)\right)+\left(f(-2019)+f(2020)\right)+\cdots+\left(f(0)+f(1)\right)\\
                      &=2021\cdot\dfrac{\sqrt{2021}}{2021}\\
                      &=\boxed{\boxed{\sqrt{2021}}}
                      \end{aligned}
              
              
             
           
         
 
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas