Exercise Zone : Matriks [2]

Berikut ini adalah kumpulan soal mengenai Matriks tipe standar. Mau tanya soal? Gabung aja ke grup Facebook https://web.facebook.com/groups/matematikazoneid/ atau Telegram https://t.me/matematikazoneidgrup.

Tipe :


No. 11

Diketahui persamaan matriks \({\begin{pmatrix}3x&3y\\6&18\end{pmatrix}-2\begin{pmatrix}x&6\\-1&y+1\end{pmatrix}=\begin{pmatrix}2&2x-y\\8&8\end{pmatrix}}\). Nilai dari {x-y=}
  1. -2
  2. 0
  3. 2
  1. 4
  2. 6
\(\begin{aligned} \begin{pmatrix}3x&3y\\6&18\end{pmatrix}-2\begin{pmatrix}x&6\\-1&y+1\end{pmatrix}&=\begin{pmatrix}2&2x-y\\8&8\end{pmatrix}\\ \begin{pmatrix}3x&3y\\6&18\end{pmatrix}-\begin{pmatrix}2x&12\\-2&2y+2\end{pmatrix}&=\begin{pmatrix}2&2x-y\\8&8\end{pmatrix}\\ \begin{pmatrix}x&3y-12\\8&-2y+16\end{pmatrix}&=\begin{pmatrix}2&2x-y\\8&8\end{pmatrix}\\ \end{aligned}\)
x=\boxed{2}
\(\begin{aligned} -2y+16&=8\\ -2y&=-8\\ y&=\boxed{4} \end{aligned}\)

\(\begin{aligned} x-y&=2-4\\ &=\boxed{\boxed{-2}} \end{aligned}\)

No. 12

Diberikan matriks \({P = \begin{pmatrix}3&-1\\5&2\end{pmatrix}}\) dan \({Q = \begin{pmatrix}3r&2\\r&p+1\end{pmatrix}}\) dengan {r\neq0} dan {p\neq0}. Supaya matriks PQ tidak mempunyai invers, maka nilai {3p + 2 =}
  1. 4
  2. 3
  3. 2
  1. 1
  2. 0
Tidak punya invers artinya det = 0.
\(\begin{aligned} \left|PQ\right|&=0\\ |P||Q|&=0 \end{aligned}\)
Karena |P|\neq0 maka
\(\begin{aligned} |Q|&=0\\ 3r(p+1)-2r&=0\\ 3pr+3r-2r&=0\\ 3pr+r&=0\\ r(3p+1)&=0\\ 3p+1&=0\\ 3p+2&=\boxed{\boxed{1}} \end{aligned}\)

No. 13

Jika diketahui matriks A memenuhi persamaan \({\begin{pmatrix}5&1\\7&2\end{pmatrix}A=\begin{pmatrix}3&-2\\-3&1\end{pmatrix}\begin{pmatrix}3&4\\1&2\end{pmatrix}}\), maka determinan dari A^{-1} adalah
  1. -2
  2. -\dfrac12
  3. 0
  1. \dfrac12
  2. 2
\(\begin{aligned} \begin{pmatrix}5&1\\7&2\end{pmatrix}A&=\begin{pmatrix}3&-2\\-3&1\end{pmatrix}\begin{pmatrix}3&4\\1&2\end{pmatrix}\\ \begin{vmatrix}5&1\\7&2\end{vmatrix}|A|&=\begin{vmatrix}3&-2\\-3&1\end{vmatrix}\begin{vmatrix}3&4\\1&2\end{vmatrix}\\ (5\cdot2-1\cdot7)|A|&=(3\cdot1-(-2)\cdot(-3))(3\cdot2-4\cdot1)\\ (10-7)|A|&=(3-6)(6-4)\\ 3|A|&=(-3)(2)\\ 3|A|&=-6\\ |A|&=-2 \end{aligned}\)

\(\begin{aligned} \left|A^{-1}\right|&=\dfrac1{|A|}\\ &=\boxed{\boxed{-\dfrac12}} \end{aligned}\)

No. 14

Diketahui matriks \({P=\begin{pmatrix}2&-3&6\\5&0&-2\\1&4&-4\end{pmatrix}}\). Nilai {(a_{12}-a_{31})} dari transpose P adalah
  1. -4
  2. -2
  3. -1
  1. 1
  2. 11
\(P^T=\begin{pmatrix}2&5&1\\-3&0&4\\6&-2&-4\end{pmatrix}\)

\(\begin{aligned} a_{12}-a_{31}&=5-6\\ &=\boxed{\boxed{-1}} \end{aligned}\)

No. 15

Matriks X_{2\times2} yang memenuhi persamaan {AXA^{-1}=B} jika matriks \({A=\begin{pmatrix}2&-2\\1&3\end{pmatrix}}\) dan \({B=\begin{pmatrix}3&2\\-1&-2\end{pmatrix}}\) adalah ....
  1. \(\begin{pmatrix}3&2\\-1&-2\end{pmatrix}\)
  2. \(\begin{pmatrix}2&-1\\2&1\end{pmatrix}\)
  3. \(\begin{pmatrix}3&2\\-1&2\end{pmatrix}\)
  1. \(\begin{pmatrix}2&-1\\-2&-1\end{pmatrix}\)
  2. \(\begin{pmatrix}2&-1\\-2&1\end{pmatrix}\)
\(\begin{aligned} A^{-1}&=\dfrac1{(2)(3)-(-2)(1)}\begin{pmatrix}3&2\\-1&2\end{pmatrix}\\ &=\dfrac18\begin{pmatrix}3&2\\-1&2\end{pmatrix} \end{aligned}\)

\(\begin{aligned} AXA^{-1}&=B\\ AX&=BA\\ x&=A^{-1}BA\\ &=\dfrac18\begin{pmatrix}3&2\\-1&2\end{pmatrix}\begin{pmatrix}3&2\\-1&-2\end{pmatrix}\begin{pmatrix}2&-2\\1&3\end{pmatrix}\\ &=\dfrac18\begin{pmatrix}7&2\\-5&-6\end{pmatrix}\begin{pmatrix}2&-2\\1&3\end{pmatrix}\\ &=\dfrac18\begin{pmatrix}16&-8\\-16&-8\end{pmatrix}\\ &=\boxed{\boxed{\begin{pmatrix}2&-1\\-2&-1\end{pmatrix}}} \end{aligned}\)

No. 16

Diketahui matriks \(A=\pmatrix{2&-5\\-5&12}\) dan \(B=\pmatrix{1&-2\\-1&1}\). Tentukan (3AB)^{-1}
\(\eqalign{ 3AB&=3\pmatrix{2&-5\\-5&12}\pmatrix{1&-2\\-1&1}\\ &=3\pmatrix{(2)(1)+(-5)(-1)&(2)(-2)+(-5)(1)\\(-5)(1)+(12)(-1)&(-5)(-2)+(12)(1)}\\ &=3\pmatrix{2+5&-4-5\\-5-12&10+12}\\ &=3\pmatrix{7&-9\\-17&22}\\ &=\boxed{\boxed{\pmatrix{21&-27\\-54&66}}} }\)

No. 17

Diketahui matriks \(A=\pmatrix{1&0\\2&3}\), \(B=\pmatrix{-1&-3\\2&0}\), dan memenuhi persamaan {AX+2B=I}, dengan I adalah matriks identitas. Maka tentukan nilai determinan matriks X adalah
  1. 6
  2. 7
  3. 8
  1. 9
  2. 10
\(\eqalign{ |A|&=(1)(3)-(0)(2)\\ &=3-0\\ &=3 }\)
\(\eqalign{ AX+2B&=I\\ AX&=I-2B\\ &=\pmatrix{1&0\\0&1}-2\pmatrix{-1&-3\\2&0}\\ &=\pmatrix{1&0\\0&1}-\pmatrix{-2&-6\\4&0}\\ &=\pmatrix{3&6\\-4&1}\\ |AX|&=\begin{vmatrix}3&6\\-4&1\end{vmatrix}\\ |A||X|&=(3)(1)-(6)(-4)\\ 3|X|&=3+24\\ &=27\\ |X|&=\boxed{\boxed{9}} }\)

No. 18

Jika diketahui matriks A memenuhi persamaan \(\pmatrix{2&1\\4&5}A=\pmatrix{3&1\\3&2}\pmatrix{2&5\\1&3}\), maka determinan dari A^{–1} adalah
  1. -2
  2. -\dfrac12
  3. 0
  1. 1
  2. 2
\(\eqalign{ \pmatrix{2&1\\4&5}A&=\pmatrix{3&1\\3&2}\pmatrix{2&5\\1&3}\\ \begin{vmatrix}2&1\\4&5\end{vmatrix}|A|&=\begin{vmatrix}3&1\\3&2\end{vmatrix}\begin{vmatrix}2&5\\1&3\end{vmatrix}\\ 6|A|&=(3)(1)\\ 6|A|&=3\\ |A|&=\dfrac36\\ &=\dfrac12 }\)
\(\eqalign{ \left|A^{-1}\right|&=\dfrac1{|A|}\\ &=\dfrac1{\dfrac12}\\ &=\boxed{\boxed{2}} }\)

No. 19

Jika matriks \(A=\pmatrix{2&1\\3&-4}\), \(B=\pmatrix{-4&-1\\-3&2}\), dan \(C=\pmatrix{-11&0\\0&-11}\), maka {(A\times B)-C} sama dengan
  1. \(\pmatrix{1&1\\1&1}\)
  2. \(\pmatrix{1&0\\0&1}\)
  3. \(\pmatrix{0&1\\1&0}\)
  1. \(\pmatrix{-1&-1\\-1&-1}\)
  2. \(\pmatrix{0&0\\0&0}\)
\(\eqalign{ (A\times B)-C&=\pmatrix{2&1\\3&-4}\pmatrix{-4&-1\\-3&2}-\pmatrix{-11&0\\0&-11}\\ &=\pmatrix{-11&0\\0&-11}-\pmatrix{-11&0\\0&-11}\\ &=\boxed{\boxed{\pmatrix{0&0\\0&0}}} }\)

No. 20

Jika diketahui \(\pmatrix{x+3\\4-y}=\pmatrix{7\\5}\), Nilai dari x+y= ....
\(\eqalign{ x+3&=7\\ x&=4 }\)

\(\eqalign{ 4-y&=5\\ -y&=1\\ y&=-1 }\)
\(\eqalign{ x+y&=4+(-1)\\ &=\boxed{\boxed{3}} }\)


0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas