Berikut ini adalah kumpulan soal mengenai
Transformasi Geometri . Jika ingin bertanya soal, silahkan gabung ke grup
Telegram ,
Signal ,
Discord , atau
WhatsApp .
No.
Jika suatu garis
{l:x+2y=4} dirotasikan
45\degree searah jarum jam dengan pusat rotasi titik asal
(0,0) kemudian dilanjutkan dengan dicerminkan terhadap sumbu
y , maka diperoleh persamaan garis
{g:ax+by=c} . Nilai
{a+b+c=} ....
3-\dfrac23\sqrt3
1+\dfrac23\sqrt3
\dfrac23\sqrt3
1-\dfrac23\sqrt3
3+\dfrac23\sqrt3
Alternatif Penyelesaian
\(\eqalign{
T_1&=\pmatrix{\cos(-45^\circ)&-\sin(-45^\circ)\\\sin(-45^\circ)&\cos(-45^\circ)}\\
&=\pmatrix{\cos45^\circ&\sin45^\circ\\-\sin45^\circ&\cos45^\circ}\\
&=\pmatrix{\dfrac12\sqrt2&\dfrac12\sqrt2\\-\dfrac12\sqrt2&\dfrac12\sqrt2}\\
}\)
\(T_2=\pmatrix{-1&0\\0&1}\)
\(\eqalign{
\pmatrix{x'\\y'}&=\pmatrix{-1&0\\0&1}\pmatrix{\dfrac12\sqrt2&\dfrac12\sqrt2\\-\dfrac12\sqrt2&\dfrac12\sqrt2} \pmatrix{x\\y}\\
\pmatrix{x'\\y'}&=\pmatrix{-\dfrac12\sqrt2&-\dfrac12\sqrt2\\-\dfrac12\sqrt2&\dfrac12\sqrt2}\pmatrix{x\\y}\\
\pmatrix{x\\y}&=\pmatrix{-\dfrac12\sqrt2&-\dfrac12\sqrt2\\-\dfrac12\sqrt2&\dfrac12\sqrt2}^{-1}\pmatrix{x'\\y'}\\
&=\dfrac1{\left(-\dfrac12\sqrt2\right)\left(\dfrac12\sqrt2\right)-\left(-\dfrac12\sqrt2\right)\left(-\dfrac12\sqrt2\right)}\pmatrix{\dfrac12\sqrt2&\dfrac12\sqrt2\\\dfrac12\sqrt2&-\dfrac12\sqrt2}\pmatrix{x'\\y'}\\
&=\dfrac1{-\dfrac12-\dfrac12}\pmatrix{\dfrac12\sqrt2&\dfrac12\sqrt2\\\dfrac12\sqrt2&-\dfrac12\sqrt2}\pmatrix{x'\\y'}\\
&=\dfrac1{-1}\pmatrix{\dfrac12\sqrt2&\dfrac12\sqrt2\\\dfrac12\sqrt2&-\dfrac12\sqrt2}\pmatrix{x'\\y'}\\
&=-1\pmatrix{\dfrac12\sqrt2&\dfrac12\sqrt2\\\dfrac12\sqrt2&-\dfrac12\sqrt2}\pmatrix{x'\\y'}\\
&=\pmatrix{-\dfrac12\sqrt2&-\dfrac12\sqrt2\\-\dfrac12\sqrt2&\dfrac12\sqrt2}\pmatrix{x'\\y'}\\
&=\pmatrix{-\dfrac12\sqrt2x'-\dfrac12\sqrt2y'\\-\dfrac12\sqrt2x'+\dfrac12\sqrt2y'}\\
}\)
x=-\dfrac12\sqrt2x'-\dfrac12\sqrt2y'
y=-\dfrac12\sqrt2x'+\dfrac12\sqrt2y'
\(\eqalign{
x+2y&=4\\
-\dfrac12\sqrt2x'-\dfrac12\sqrt2y'+2\left(-\dfrac12\sqrt2x'+\dfrac12\sqrt2y'\right)&=4\\
-\dfrac12\sqrt2x'-\dfrac12\sqrt2y'-\sqrt2x'+\sqrt2y'&=4\\
-\dfrac32\sqrt2x'+\dfrac12\sqrt2y'&=4
}\)
a= -\dfrac32\sqrt2
b=\dfrac12\sqrt2
c=4
\(\eqalign{
a+b+c&=-\dfrac32\sqrt2+\dfrac12\sqrt2+4\\
&=\boxed{\boxed{4-\dfrac12\sqrt2}}
}\)
No.
Bayangan garis
{x+2y+3=0} oleh transformasi yang bersesuaian dengan matriks
\begin{pmatrix}1&0\\0&-1\end{pmatrix} dilanjutkan oleh rotasi pusat
O sejauh
90\degree adalah ....
{y+2x+3=0}
{-y-2x+3=0}
{y+2x-3=0}
Alternatif Penyelesaian
\begin{aligned}
\begin{pmatrix}x'\\y'\end{pmatrix}&=\begin{pmatrix}0&-1\\1&0\end{pmatrix}\begin{pmatrix}1&0\\0&-1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}\\
&=\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}\\
&=\begin{pmatrix}y\\x\end{pmatrix}
\end{aligned}
x'=y\rightarrow y=x'
y'=x\rightarrow x=y'
\begin{aligned}
x+2y+3&=0\\
y'+2x'+3&=0\\
y+2x+3&=0
\end{aligned}
No.
Jika titik
(s,t) dirotasi sejauh
270\degree berlawanan arah jarum jam terhadap titik pusat, kemudian dicerminkan terhadap
y=t diperoleh titik
(-2,3-t) , maka
s+3t=
Alternatif Penyelesaian
\begin{aligned}
\begin{pmatrix}s'\\t'\end{pmatrix}&=\begin{pmatrix}\cos270\degree&-\sin270\degree\\\sin270\degree&\cos270\degree\end{pmatrix}\begin{pmatrix}s\\t\end{pmatrix}\\
&=\begin{pmatrix}0&-(-1)\\-1&0\end{pmatrix}\begin{pmatrix}s\\t\end{pmatrix}\\
&=\begin{pmatrix}0&1\\-1&0\end{pmatrix}\begin{pmatrix}s\\t\end{pmatrix}\\
&=\begin{pmatrix}t\\-s\end{pmatrix}
\end{aligned}
\begin{aligned}
\begin{pmatrix}s"\\t"\end{pmatrix}&=\begin{pmatrix}t\\2t-(-s)\end{pmatrix}\\
\begin{pmatrix}-2\\3-t\end{pmatrix}&=\begin{pmatrix}t\\2t+s\end{pmatrix}
\end{aligned}
\begin{aligned}
3-t&=2t+s\\
3&=3t+s\\
s+3t&=\boxed{\boxed{3}}
\end{aligned}
No.
Persamaan garis hasil pencerminan dari
{3𝑥 - 5𝑦 + 15 = 0} dengan garis
{y = x}
dilanjutkan dengan tranlasi
\begin{pmatrix}2\\3\end{pmatrix} adalah ...
3y+5x-14 = 0
3y -5x+14 = 0
5x -3y +14 = 0
5x +3y -14 = 0
5x -3x - 14 = 0
Alternatif Penyelesaian
\begin{aligned}
\begin{pmatrix}x'\\y'\end{pmatrix}&=\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}+\begin{pmatrix}2\\3\end{pmatrix}\\
&=\begin{pmatrix}y\\x\end{pmatrix}+\begin{pmatrix}2\\3\end{pmatrix}\\
&=\begin{pmatrix}y+2\\x+3\end{pmatrix}
\end{aligned}
x'=y+2\rightarrow y=x'-2
y'=x+2\rightarrow x=y'-3
Bayangannya,
\begin{aligned}
3𝑥 - 5𝑦 + 15 &= 0\\
3(y'-3)-5(x'-2)+15&=0\\
3y'-9-5x'+10+15&=0\\
-5x'+3y'+16&=0\\
5x'-3y'-16&=0\\
5x-3y-16&=0
No.
Tentukan koordinat titik
A , jika titik
dirotasi sejauh
90\degree berlawanan arah
jarum jam terhadap titik pusat
O(0,0) , kemudian dicerminkan terhadap
y = b
diperoleh titik
(5, 2-b)
Alternatif Penyelesaian
Rotasi 90\degree
\begin{aligned}
\begin{pmatrix}x'\\y'\end{pmatrix}&=\begin{pmatrix}0&-1\\1&0\end{pmatrix}\begin{pmatrix}a\\b\end{pmatrix}\\
&=\begin{pmatrix}-b\\a\end{pmatrix}
\end{aligned}
Refleksi y=b
\begin{aligned}
\begin{pmatrix}x"\\y"\end{pmatrix}&=\begin{pmatrix}-b\\2b-a\end{pmatrix}\\
\begin{pmatrix}5\\2-b\end{pmatrix}&=\begin{pmatrix}-b\\2b-a\end{pmatrix}\end{aligned}
\begin{aligned}
5&=-b\\
b&=-5\end{aligned}
\begin{aligned}
2-b&=2b-a\\
2-(-5)&=2(-5)-a\\
2+5&=-10-a\\
7&=-10-a\\
a&=-10-7\\
&=-17\end{aligned}
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas