\(\begin{aligned}
x-y&=\dfrac{\pi}6\\
x&=\dfrac{\pi}6+y
\end{aligned}\)
\(\begin{aligned}
\cos x-\sqrt3\cos y&=-\dfrac12\\
\cos\left(\dfrac{\pi}6+y\right)-\sqrt3\cos y&=-\dfrac12\\
\cos\dfrac{\pi}6\cos y-\sin\dfrac{\pi}6\sin y-\sqrt3\cos y&=-\dfrac12\\
\dfrac12\sqrt3\cos y-\dfrac12\sin y-\sqrt3\cos y&=-\dfrac12\\
-\dfrac12\sqrt3\cos y-\dfrac12\sin y&=-\dfrac12\\
\dfrac12\sqrt3\cos y+\dfrac12\sin y&=\dfrac12\\
\sin\dfrac{\pi}3\cos y+\cos\dfrac{\pi}3\sin y&=\dfrac12\\
\sin\left(\dfrac{\pi}3+y\right)&=\sin\dfrac{\pi}6
\end{aligned}\)
- \dfrac{\pi}3+y=\dfrac{\pi}6
\(\begin{aligned}
y&=\dfrac{\pi}6-\dfrac{\pi}3\\
&=-\dfrac{\pi}6\end{aligned}\)
\(\begin{aligned}
x&=\dfrac{\pi}6+y\\
x&=\dfrac{\pi}6+\left(-\dfrac{\pi}6\right)\\
&=0
\end{aligned}\)
\(\begin{aligned}
\cos(x+y)&=\cos\left(0-\dfrac{\pi}6\right)\\
&=\cos\left(-\dfrac{\pi}6\right)\\
&=\cos\dfrac{\pi}6\\
&=\dfrac12\sqrt3
\end{aligned}\)
- \dfrac{\pi}3+y=\dfrac{5\pi}6
\(\begin{aligned}
y&=\dfrac{5\pi}6-\dfrac{\pi}3\\
&=\dfrac{3\pi}6\end{aligned}\)
\(\begin{aligned}
x&=\dfrac{\pi}6+y\\
x&=\dfrac{\pi}6+\dfrac{3\pi}6\\
&=\dfrac{4\pi}6
\end{aligned}\)
\(\begin{aligned}
\cos(x+y)&=\cos\left(\dfrac{4\pi}6+\dfrac{3\pi}6\right)\\
&=\cos\dfrac{7\pi}6\\
&=\cos\dfrac{\pi}6\\
&=\boxed{\boxed{-\dfrac12\sqrt3}}
\end{aligned}\)
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas