Berikut ini adalah kumpulan soal mengenai
Bentuk Akar. Jika ingin bertanya soal, silahkan gabung ke grup
Telegram,
Signal,
Discord, atau
WhatsApp.
No.
Pecahan
\dfrac{\sqrt5+\sqrt3-\sqrt2}{\sqrt2+\sqrt3-\sqrt5} setara dengan....
- \dfrac{\sqrt{60}+\sqrt6}2
- \dfrac{\sqrt{10}+\sqrt6}2
- \dfrac{\sqrt{15}+\sqrt3}2
- \dfrac{\sqrt{15}-\sqrt3}2
- \dfrac{\sqrt{15}+\sqrt6}2
\begin{aligned}
\dfrac{\sqrt5+\sqrt3-\sqrt2}{\sqrt2+\sqrt3-\sqrt5}&=\dfrac{\sqrt5+\sqrt3-\sqrt2}{\sqrt2+\sqrt3-\sqrt5}\cdot\dfrac{\sqrt2+\sqrt3+\sqrt5}{\sqrt2+\sqrt3+\sqrt5}\\[8pt]
&=\dfrac{\sqrt{10}+\sqrt{15}+5+\sqrt6+3+\sqrt{15}-2-\sqrt6-\sqrt{10}}{\left(\sqrt2+\sqrt3\right)^2-5}\\[8pt]
&=\dfrac{2\sqrt{15}+6}{2+2\sqrt6+3-5}\\[8pt]
&=\dfrac{2\sqrt{15}+6}{2\sqrt6}\\[8pt]
&=\dfrac{\sqrt{15}+3}{\sqrt6}\cdot\dfrac{\sqrt6}{\sqrt6}\\[8pt]
&=\dfrac{\sqrt{90}+3\sqrt6}6\\[8pt]
&=\dfrac{3\sqrt{10}+3\sqrt6}6\\
&=\boxed{\boxed{\dfrac{\sqrt{10}+\sqrt6}2}}
\end{aligned}
No.
Bentuk sederhana dari
{\dfrac{2\sqrt3+4\sqrt{27}-4\sqrt3}{\sqrt2}} adalah....
\begin{aligned}
\dfrac{2\sqrt3+4\sqrt{27}-4\sqrt3}{\sqrt2}&=\dfrac{2\sqrt3+4\cdot3\sqrt3-4\sqrt3}{\sqrt2}\\[4pt]
&=\dfrac{2\sqrt3+12\sqrt3-4\sqrt3}{\sqrt2}\\[4pt]
&=\dfrac{10\sqrt3}{\sqrt2}\cdot\dfrac{\sqrt2}{\sqrt2}\\[4pt]
&=\dfrac{10\sqrt6}2\\[4pt]
&=\boxed{\boxed{5\sqrt6}}
\end{aligned}
No.
Bentuk sederhana dari
{-4\sqrt{200}+2\sqrt{242}+5\sqrt{50}-10\sqrt2} adalah ....
\begin{aligned}
-4\sqrt{200}+2\sqrt{242}+5\sqrt{50}-10\sqrt2&=-4\cdot10\sqrt2+2\cdot11\sqrt2+5\cdot5\sqrt2-10\sqrt2\\
&=-40\sqrt2+22\sqrt2+25\sqrt2-10\sqrt2\\
&=-3\sqrt2
\end{aligned}
No.
Jika
r=\dfrac{20\sqrt2-25}{\left(10+20\sqrt2\right)\left(2-\sqrt2\right)}, maka
(4r-2)^2= ....
\begin{aligned}
r&=\dfrac{20\sqrt2-25}{\left(10+20\sqrt2\right)\left(2-\sqrt2\right)}\\
&=\dfrac{5\left(4\sqrt2-5\right)}{10\left(1+2\sqrt2\right)\left(2-\sqrt2\right)}\\
&=\dfrac{4\sqrt2-5}{2\left(1+2\sqrt2\right)\left(2-\sqrt2\right)}\\
&=\dfrac{4\sqrt2-5}{2\left(2-\sqrt2+4\sqrt2-4\right)}\\
&=\dfrac{24+8\sqrt2-15\sqrt2-10}{2(18-4)}\\
&=\dfrac{14-7\sqrt2}{2(14)}\\
&=\dfrac{2-\sqrt2}{2(2)}\\
&=\dfrac{2-\sqrt2}4
\end{aligned}
\begin{aligned}
(4r-2)^2&=\left(4\left(\dfrac{2-\sqrt2}4\right)-2\right)^2\\
&=\left(2-\sqrt2-2\right)^2\\
&=\left(-\sqrt2\right)^2\\
&=2
\end{aligned}
No.
Jika
3p=\sqrt{2,37} maka nilai
\sqrt{237} adalah....
\begin{aligned}
\sqrt{237}&=\sqrt{2,37\cdot100}\\
&=\sqrt{2,37}\cdot10\\
&=3p\cdot10\\
&=\boxed{\boxed{30p}}
\end{aligned}
No.
Jika
\dfrac{5-5\sqrt2}{\sqrt5-\sqrt{10}}=b, maka
^b\negmedspace\log125=
\begin{aligned}
\dfrac{5-5\sqrt2}{\sqrt5-\sqrt{10}}&=\dfrac{5\left(1-\sqrt2\right)}{\sqrt5\left(1-\sqrt2\right)}\\[8pt]
&=\dfrac5{\sqrt5}\cdot\dfrac{\sqrt5}{\sqrt5}\\[8pt]
&=\dfrac{5\sqrt5}5\\[8pt]
b&=\sqrt5
\end{aligned}
\begin{aligned}
^b\negmedspace\log125&={^{\sqrt5}\negmedspace\log}125\\
&={^{5^{\frac12}}\negmedspace\log}5^3\\
&=2\cdot3\\
&=\boxed{\boxed{6}}
\end{aligned}
No.
{\sqrt{3+2\sqrt2}-\sqrt2=} ....
- 4\sqrt2
- {3+\sqrt2}
- \sqrt2
\begin{aligned}
\sqrt{3+2\sqrt2}-\sqrt2&=\sqrt{2+1+2\sqrt{2\cdot1}}-\sqrt2\\
&=\cancel{\sqrt2}+\sqrt1-\cancel{\sqrt2}\\
&=\boxed{\boxed{1}}
\end{aligned}
No.
Bentuk sederhana dari
\dfrac{\left(\sqrt3+\sqrt7\right)\left(\sqrt3-\sqrt7\right)}{2\sqrt5-4\sqrt2} adalah
- \dfrac23\left(\sqrt5+2\sqrt2\right)
- \dfrac23\left(2\sqrt2-\sqrt5\right)
- -\dfrac23\left(2\sqrt5+4\sqrt2\right)
- -\dfrac49\left(2\sqrt5+4\sqrt2\right)
- -\dfrac49\left(2\sqrt5-\sqrt2\right)
\begin{aligned}
\dfrac{\left(\sqrt3+\sqrt7\right)\left(\sqrt3-\sqrt7\right)}{2\sqrt5-4\sqrt2}&=\dfrac{3-7}{2\sqrt5-4\sqrt2}{\color{red}{\times\dfrac{2\sqrt5+4\sqrt2}{2\sqrt5+4\sqrt2}}}\\[4pt]
&=\dfrac{-4\left(2\sqrt5+4\sqrt2\right)}{20-32}\\[4pt]
&=\dfrac{-4\left(2\sqrt5+4\sqrt2\right)}{-12}\\[4pt]
&=\dfrac{2\sqrt5+4\sqrt2}3\\[4pt]
&=\dfrac{2\left(\sqrt5+2\sqrt2\right)}3\\
&=\boxed{\boxed{\dfrac23\left(\sqrt5+2\sqrt2\right)}}
\end{aligned}
No.
Tentukan nilai dari
\left(\sqrt7+\sqrt5\right)\left(\sqrt7-\sqrt5\right)
\begin{aligned}
\left(\sqrt7+\sqrt5\right)\left(\sqrt7-\sqrt5\right)&=7-5\\
&=\boxed{\boxed{2}}
\end{aligned}
No.
Hasil dari
{\sqrt{108}+\sqrt{15}\times\sqrt5-2\sqrt{48}} adalah
\begin{aligned}
\sqrt{108}+\sqrt{15}\times\sqrt5-2\sqrt{48}&=\sqrt{36\cdot3}+\sqrt{3\cdot5}\times\sqrt5-2\sqrt{16\cdot3}\\
&=6\sqrt3+\sqrt3\times\sqrt5\times\sqrt5-2\times4\sqrt3\\
&=6\sqrt3+5\sqrt3-8\sqrt3\\
&=\boxed{\boxed{3\sqrt3}}
\end{aligned}
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas