Berikut ini adalah kumpulan soal mengenai limit tak hingga tipe SBMPTN. Jika ingin bertanya soal, silahkan gabung ke grup
Facebook atau
Telegram .
No. 1
Tentukan nilai dari
\displaystyle\lim_{x\to\infty}\left(\sqrt{4x+2}-\sqrt{4x}\right)\sqrt{x+1} !
Ganesha Operation
Penyelesaian \(\begin{aligned}
\displaystyle\lim_{x\to\infty}\left(\sqrt{4x+2}-\sqrt{4x}\right)\sqrt{x+1}&=\displaystyle\lim_{x\to\infty}\left(\left(\sqrt{4x+2}\right)\left(\sqrt{x+1}\right)-\left(\sqrt{4x}\right)\left(\sqrt{x+1}\right)\right)\\
&=\displaystyle\lim_{x\to\infty}\left(\sqrt{4x^2+6x+2}-\sqrt{4x^2+4x}\right)\\
&=\dfrac{6-4}{2\sqrt4}\\[9pt]
&=\boxed{\boxed{\dfrac12}}
\end{aligned}\)
No. 2
\displaystyle\lim_{x\to\infty}\sqrt{x^2+3x-5}+\sqrt{x^2-x+2}-\sqrt{4x^2+8x-5}= ....
Penyelesaian \(\begin{aligned}
&\displaystyle\lim_{x\to\infty}\sqrt{x^2+3x-5}+\sqrt{x^2-x+2}-\sqrt{4x^2+8x-5}&=\displaystyle\lim_{x\to\infty}\sqrt{x^2+3x-5}+\sqrt{x^2-x+2}-\sqrt{4\left(x^2+2x-\dfrac54\right)}\\
&=\displaystyle\lim_{x\to\infty}\sqrt{x^2+3x-5}+\sqrt{x^2-x+2}-2\sqrt{x^2+2x-\dfrac54}\\
&=\displaystyle\lim_{x\to\infty}\sqrt{x^2+3x-5}-\sqrt{x^2+2x-\dfrac54}+\sqrt{x^2-x+2}-\sqrt{x^2+2x-\dfrac54}\\
&=\dfrac{3-2}{2\sqrt1}+\dfrac{-1-2}{2\sqrt1}\\
&=\dfrac12+\dfrac{-3}2\\
&=\boxed{\boxed{-1}}
\end{aligned}\)
No. 3
Tentukan nilai
\displaystyle\lim_{x\to\infty}\sqrt{25x^2-100x}-\sqrt{4x^2-5x}-3x-2 ?
Penyelesaian \(\begin{aligned}
\displaystyle\lim_{x\to\infty}\sqrt{25x^2-100x}-\sqrt{4x^2-5x}-3x-2&=\displaystyle\lim_{x\to\infty}\sqrt{25x^2-100x}-\sqrt{4x^2-5x}-5x+2x-2\\
&=\displaystyle\lim_{x\to\infty}\sqrt{25x^2-100x}-5x+2x-2-\sqrt{4x^2-5x}\\
&=\displaystyle\lim_{x\to\infty}\sqrt{25x^2-100x}-\sqrt{(5x)^2}+\sqrt{(2x-2)^2}-\sqrt{4x^2-5x}\\
&=\displaystyle\lim_{x\to\infty}\sqrt{25x^2-100x}-\sqrt{25x^2}+\sqrt{4x^2-8x+4}-\sqrt{4x^2-5x}\\
&=\dfrac{-100-0}{2\sqrt{25}}+\dfrac{-8-(-5)}{2\sqrt4}\\[8pt]
&=\dfrac{-100}{10}+\dfrac{-3}4\\[8pt]
&=-10-\dfrac34\\
&=\boxed{\boxed{-\dfrac{43}4}}
\end{aligned}\)
No. 4
Tentukan nilai
\displaystyle\lim_{x\to\infty}\sqrt{9x^2+2}+\sqrt{4x^2-3x+7}-5x ?
Penyelesaian \(\begin{aligned}
\displaystyle\lim_{x\to\infty}\sqrt{9x^2+2}+\sqrt{4x^2-3x+7}-5x&=\displaystyle\lim_{x\to\infty}\sqrt{9x^2+2}+\sqrt{4x^2-3x+7}-3x-2x\\
&=\displaystyle\lim_{x\to\infty}\sqrt{9x^2+2}-3x+\sqrt{4x^2-3x+7}-2x\\
&=\displaystyle\lim_{x\to\infty}\sqrt{9x^2+2}-\sqrt{9x^2}+\sqrt{4x^2-3x+7}-\sqrt{4x^2}\\
&=\dfrac{0-0}{2\sqrt9}+\dfrac{-3-0}{2\sqrt4}\\[8pt]
&=0+\dfrac{-3}4\\
&=\boxed{\boxed{-\dfrac34}}
\end{aligned}\)
No. 5 Jika diketahui dua fungsi
f(x) dan
g(x) dengan
{f(x)=\sqrt{x^2+5x}-\sqrt{x^2-2x+1}} dan
{g(x)=x-\sqrt{x^2+2x}} , maka nilai dari
{\displaystyle\lim_{x\to\infty}\dfrac{f(x)}{g(x)}=}
Penyelesaian \(\begin{aligned}
\displaystyle\lim_{x\to\infty}f(x)&=\displaystyle\lim_{x\to\infty}\left(\sqrt{x^2+5x}-\sqrt{x^2-2x+1}\right)\\
&=\dfrac{5-(-2)}{2\sqrt1}\\[8pt]
&=\dfrac72
\end{aligned}\)
\(\begin{aligned}
\displaystyle\lim_{x\to\infty}g(x)&=\displaystyle\lim_{x\to\infty}\left(x-\sqrt{x^2+2x}\right)\\
&=\displaystyle\lim_{x\to\infty}\left(\sqrt{x^2}-\sqrt{x^2+2x}\right)\\
&=\dfrac{0-2}{2\sqrt1}\\[8pt]
&=\dfrac{-2}2\\
&=\boxed{\boxed{-1}}
\end{aligned}\)
\(\begin{aligned}
\displaystyle\lim_{x\to\infty}\dfrac{f(x)}{g(x)}&=\dfrac{\displaystyle\lim_{x\to\infty}f(x)}{\displaystyle\lim_{x\to\infty}g(x)}\\[8pt]
&=\dfrac{\dfrac72}{-1}\\
&=\boxed{\boxed{-\dfrac72}}
\end{aligned}\)
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas