Exercise Zone : Vektor

Berikut ini adalah kumpulan soal mengenai Vektor. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:


No.

Diketahui A=(a,-2,3), B=(2,-1,1), dan C=(1,5,c). Agar vektor \overline{AB} tegak lurus pada \overline{BC}, maka nilai a-2c sama dengan ....
\begin{aligned} \overline{AB}&=\begin{pmatrix}2\\-1\\1\end{pmatrix}-\begin{pmatrix}a\\-2\\3\end{pmatrix}\\ &=\begin{pmatrix}2-a\\1\\-2\end{pmatrix} \end{aligned}

\begin{aligned} \overline{BC}&=\begin{pmatrix}1\\5\\c\end{pmatrix}-\begin{pmatrix}2\\-1\\1\end{pmatrix}\\ &=\begin{pmatrix}-1\\6\\c-1\end{pmatrix} \end{aligned}

\overline{AB} tegak lurus pada \overline{BC} maka
\begin{aligned} \overline{AB}\cdot\overline{BC}&=0\\ \begin{pmatrix}2-a\\1\\-2\end{pmatrix}\cdot\begin{pmatrix}-1\\6\\c-1\end{pmatrix}&=0\\ (2-a)(-1)+(1)(6)+(-2)(c-1)&=0\\ -2+a+6-2c+2&=0\\ a-2c&=\boxed{\boxed{-6}} \end{aligned}

No.

P_1=(5,-2,1) dan P_2=(2,4,2) maka vektor 5\overrightarrow{P_1P_2} adalah....



\begin{aligned} 5\overrightarrow{P_1P_2}&=5\left(\begin{pmatrix}2\\4\\2\end{pmatrix}-\begin{pmatrix}5\\-2\\1\end{pmatrix}\right)\\ &=5\begin{pmatrix}-3\\6\\1\end{pmatrix}\\ &=\begin{pmatrix}-15\\30\\5\end{pmatrix}\\ &=\boxed{\boxed{(-15,30,5)}} \end{aligned}

No.

Diketahui vektor {\vec{a}=(4,6)}, {\vec{b}=(3,4)} dan {\vec{c}=(p,0)}. Jika {\left|\vec{c}-\vec{a}\right|=10} maka cosinus sudut antara vector \vec{b} dan \vec{c} yang mungkin adalah
  1. \dfrac25
  2. \dfrac12
  3. \dfrac35
  1. \dfrac23
  2. \dfrac34

CARA BIASA

\(\eqalign{ \left|\vec{c}-\vec{a}\right|&=10\\ \sqrt{(p-4)^2+(0-6)^2}&=10\\ \sqrt{p^2-8p+16+36}&=10\\ \sqrt{p^2-8p+52}&=10\\ p^2-8p+52&=100\\ p^2-8p-48&=0\\ (p+4)(p-12)&=0 }\)
p=-4 atau p=12

Untuk p=-4

\vec{c}=(-4,0)
\(\eqalign{ \cos(\vec{b},\vec{c})&=\dfrac{\vec{b}\cdot\vec{c}}{\left|\vec{b}\right|\left|\vec{c}\right|}\\ &=\dfrac{(3)(-4)+(4)(0)}{\sqrt{3^2+4^2}\sqrt{(-4)^2+0^2}}\\ &=\dfrac{-12+0}{\sqrt{9+16}\sqrt{16+0}}\\ &=\dfrac{-12}{\sqrt{25}\sqrt{16}}\\ &=\dfrac{-12}{(5)(4)}\\ &=\boxed{\boxed{-\dfrac35}} }\)

Untuk p=12

\vec{c}=(12,0)
\(\eqalign{ \cos(\vec{b},\vec{c})&=\dfrac{\vec{b}\cdot\vec{c}}{\left|\vec{b}\right|\left|\vec{c}\right|}\\ &=\dfrac{(3)(12)+(4)(0)}{\sqrt{3^2+4^2}\sqrt{12^2+0^2}}\\ &=\dfrac{36+0}{\sqrt{9+16}\sqrt{144+0}}\\ &=\dfrac{36}{\sqrt{25}\sqrt{144}}\\ &=\dfrac{36}{(5)(12)}\\ &=\boxed{\boxed{\dfrac35}} }\)

CARA CEPAT

\(\eqalign{ \cos(\vec{b},\vec{c})&=\dfrac{\vec{b}\cdot\vec{c}}{\left|\vec{b}\right|\left|\vec{c}\right|}\\ &=\dfrac{(3)(p)+(4)(0)}{\sqrt{3^2+4^2}\sqrt{p^2+0^2}}\\ &=\dfrac{3p+0}{\sqrt{9+16}\sqrt{p^2+0}}\\ &=\dfrac{3p}{\sqrt{25}\sqrt{p^2}}\\ &=\dfrac{3p}{\sqrt{25}|p|}\\ &=\boxed{\boxed{\pm\dfrac35}} }\)

No.

Diketahui \left|\vec{a}\right|=4, \left|\vec{b}\right|=5 serta \left|\vec{a}+\vec{b}\right|=6, tentukan nilai dari \left|\vec{a}-\vec{b}\right|
\begin{aligned} \left|\vec{a}+\vec{b}\right|^2+\left|\vec{a}-\vec{b}\right|^2&=\left|\vec{a}\right|^2+\left|\vec{b}\right|^2\\ 6^2+\left|\vec{a}-\vec{b}\right|^2&=4^2+5^2\\ 36+\left|\vec{a}-\vec{b}\right|^2&=16+25\\ \left|\vec{a}-\vec{b}\right|^2&=5\\ \left|\vec{a}-\vec{b}\right|&=\boxed{\boxed{\sqrt5}} \end{aligned}

No.

Diketahui \(\overrightarrow{PQ}=\pmatrix{1\\0}\) dan \(\overrightarrow{PR}=\pmatrix{2\\2}\). Jika \overrightarrow{PS}=\dfrac14\overrightarrow{PQ}, maka \overrightarrow{RS}=
\(\eqalign{ \overrightarrow{PR}&=\pmatrix{2\\2}\\ \vec{r}-\vec{p}&=\pmatrix{2\\2}\\ \vec{p}-\vec{r}&=\pmatrix{-2\\-2} }\)

\(\eqalign{ \overrightarrow{PS}&=\dfrac14\overrightarrow{PQ}\\ \vec{s}-\vec{p}&=\dfrac14\pmatrix{1\\0}\\ &=\pmatrix{\dfrac14\\0} }\)

\(\eqalign{ \overrightarrow{RS}&=\vec{s}-\vec{r}\\ &=\vec{s}-\vec{p}+\vec{p}-\vec{r}\\ &=\pmatrix{\dfrac14\\0}+\pmatrix{-2\\-2}\\ &=\boxed{\boxed{\pmatrix{-\dfrac74\\-2}}} }\)

No.

Diberikan {\vec{a}=2\vec{i}+3\vec{j}-2\vec{k}} dan {\vec{b}=3\vec{i}-3\vec{j}-4\vec{k}}. Hasil \vec{a}\cdot\vec{b} adalah
  1. 3 satuan
  2. 4 satuan
  3. 5 satuan
  1. 8 satuan
  2. 10 satuan
\(\eqalign{ \vec{a}\cdot\vec{b}&=(2)(3)+(3)(-3)+(-2)(-4)\\ &=6-9+8\\ &=\boxed{\boxed{5}} }\)

No.

Jika vektor {a=10i+6j-3k} dan {b=8i+3j+3k} serta {c=a-b}, maka vektor satuan yang searah dengan c adalah ....
  1. \dfrac67i+\dfrac27j+\dfrac37k
  2. \dfrac27i+\dfrac37j-\dfrac67k
  3. \dfrac67i-\dfrac37j+\dfrac67k
  1. \dfrac67i-\dfrac37j-\dfrac27k
  2. -\dfrac27i+\dfrac67j-\dfrac37k
\(\eqalign{ c&=a-b\\ &=\left(10i+6j-3k\right)-\left(8i+3j+3k\right)\\ &=10i+6j-3k-8i-3j-3k\\ &=2i+3j-6k }\)

\(\eqalign{ |c|&=\sqrt{2^2+3^2+(-6)^2}\\ &=\sqrt{4+9+36}\\ &=\sqrt{49}\\ &=7 }\)
\(\eqalign{ e_c&=\dfrac{c}{|c|}\\ &=\dfrac{2i+3j-6k}7\\ &=\boxed{\boxed{\dfrac27i+\dfrac37j-\dfrac67k}} }\)

No.

Tentukan panjang vektor p=(3,5,-4)
\begin{aligned} |p|&=\sqrt{3^2+5^2+(-4)^2}\\ &=\sqrt{9+25+16}\\ &=\sqrt{50}\\ &=\boxed{\boxed{5\sqrt2}} \end{aligned}


0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas