Berikut ini adalah kumpulan soal mengenai
Trigonometri. Jika ingin bertanya soal, silahkan gabung ke grup
Telegram,
Signal,
Discord, atau
WhatsApp.
No.
Nilai minimum dari fungsi
h(x)=\dfrac{1-\tan^2x}{2\sec^2x} untuk
0\leq x\leq2\pi adalah....
$\eqalign{
\dfrac{1-\tan^2x}{2\sec^2x}&=\dfrac{1-\dfrac{\sin^2x}{\cos^2x}}{\dfrac2{\cos^2x}}\\[4pt]
&=\dfrac{\cos^2x-\sin^2x}2\\[4pt]
&=\dfrac12\cos2x
}$
Minimum = -\dfrac12
No.
Jika
x-y=\dfrac12\pi maka
\tan x adalah....
-
\dfrac{1+\tan y^2}{y}
-
-\dfrac{1-y^2}{\tan y}
-
\dfrac{\tan(1-y)}{(1+y)^2}
-
\dfrac{\tan y}{(1+y)^2}
-
-\dfrac1{\tan y}
x=\dfrac12\pi+y
\begin{aligned}
\tan x&=\tan\left(\dfrac12\pi+y\right)\\
&=-\cot y\\
&=-\dfrac1{\tan y}
\end{aligned}
No.
Jika
\sin x+\cos x=2p, maka
\sin^4x+\cos^4x= ....
-
1-\left(2p^2-1\right)^2
-
1+\dfrac12\left(2p^2-1\right)^2
-
1-\dfrac12\left(2p^2-1\right)^2
-
1+\dfrac12\left(4p^2-1\right)^2
-
1-\dfrac12\left(4p^2-1\right)^2
\begin{aligned}
(\sin x+\cos x)^2&=\sin^2x+2\sin x\cos x+\cos^2x\\
(2p)^2&=2\sin x\cos x+1\\
\sin x\cos x&=\dfrac12\left(4p^2-1\right)
\end{aligned}
\begin{aligned}
\sin^4x+\cos^4x&=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x\\
&=1^2-2\left(\sin x\cos x\right)^2\\
&=1-2\left(\dfrac12\left(4p^2-1\right)\right)^2\\
&=1-\dfrac12\left(4p^2-1\right)^2
\end{aligned}
No.
Nilai yang ekivalen dengan
\dfrac{\dfrac{\sin^2x+\cos^2x}{\tan^2x+\ctg^2x}}{\dfrac{\sin^2x-\cos^2x}{\tan^2x-\ctg^2x}} adalah
-
\dfrac2{2+\sin^22x}
-
\dfrac2{1+2\cos^22x}
-
\dfrac{2\sec^2x}{\sec^2x-1}
-
\dfrac{2\csc^2x}{\csc^2x+1}
-
\dfrac{2\sec^2x}{\sec^2x+1}
\begin{aligned}
\dfrac{\dfrac{\sin^2x+\cos^2x}{\tan^2x+\ctg^2x}}{\dfrac{\sin^2x-\cos^2x}{\tan^2x-\ctg^2x}}&=\dfrac{\sin^2x+\cos^2x}{\tan^2x+\ctg^2x}\cdot\dfrac{\tan^2x-\ctg^2x}{\sin^2x-\cos^2x}\\[9pt]
&=\dfrac1{\dfrac{\sin^2x}{\cos^2x}+\dfrac{\cos^2x}{\sin^2x}}\cdot\dfrac{\dfrac{\sin^2x}{\cos^2x}-\dfrac{\cos^2x}{\sin^2x}}{\sin^2x-\cos^2x}\\[9pt]
&=\dfrac1{\dfrac{\sin^4x+\cos^4x}{\cos^2x\sin^2x}}\cdot\dfrac{\dfrac{\sin^4x-\cos^4x}{\cos^2x\sin^2x}}{\sin^2x-\cos^2x}\\[9pt]
&=\dfrac{\cancel{\cos^2x\sin^2x}}{\sin^4x+\cos^4x}\cdot\dfrac{\sin^4x-\cos^4x}{\left(\cancel{\cos^2x\sin^2x}\right)\left(\sin^2x-\cos^2x\right)}\\[9pt]
&=\dfrac1{\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x}\cdot\dfrac{\left(\sin^2x+\cos^2x\right)\left(\sin^2x-\cos^2x\right)}{\left(\sin^2x-\cos^2x\right)}\color{red}{\cdot\dfrac{\times2}{\times2}}\\[9pt]
&=\dfrac2{2\left(1\right)^2-4\sin^2x\cos^2x}\cdot1\\[8pt]
&=\dfrac2{2(1)-(2\sin x\cos x)^2}\\[8pt]
&=\dfrac2{2-(\sin2x)^2}\\[8pt]
&=\dfrac2{1+1-\sin^22x}\\[8pt]
&=\dfrac2{1+\cos^22x}\\[8pt]
&=\dfrac{\dfrac2{\cos^2x}}{\dfrac1{\cos^2x}+1}\\[8pt]
&=\boxed{\boxed{\dfrac{2\sec^2x}{\sec^2x+1}}}
\end{aligned}
No.
Diketahui
\sin\alpha\cos\alpha=\dfrac8{25}. Nilai
\dfrac1{\sin\alpha}-\dfrac1{\cos\alpha} adalah
-
\dfrac3{25}
-
\dfrac9{25}
-
\dfrac58
\begin{aligned}
\left(\cos\alpha-\sin\alpha\right)^2&=\cos^2\alpha+\sin^2\alpha-2\cos\alpha\sin\alpha\\
&1-2\left(\dfrac8{25}\right)\\
&=1-\dfrac{16}{25}\\
&=\dfrac9{25}\\
\cos\alpha-\sin\alpha&=\sqrt{\dfrac9{25}}\\
&=\boxed{\dfrac35}
\end{aligned}
\begin{aligned}
\dfrac1{\sin\alpha}-\dfrac1{\cos\alpha}&=\dfrac{\cos\alpha-\sin\alpha}{\sin\alpha\cos\alpha}\\
&=\dfrac{\dfrac35}{\dfrac8{25}}\\
&=\dfrac35\cdot\dfrac{25}8\\
&=\boxed{\boxed{\dfrac{15}8}}
\end{aligned}
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas