Berikut ini adalah kumpulan soal mengenai notasi sigma tipe standar. Jika ingin bertanya soal, silahkan gabung ke grup
Facebook atau
Telegram.
No. 1
Diketahui
{\displaystyle\sum_{n=1}^{50}(n+2)=}...
\(\begin{aligned}
\displaystyle\sum_{n=1}^{50}(n+2)&=\displaystyle\sum_{n=1}^{50}n+\displaystyle\sum_{n=1}^{50}2\\
&=\dfrac{50(50+1)}2+2\cdot50\\
&=1275+100\\
&=1375
\end{aligned}\)
No. 2
Tentukan hasil dari
\displaystyle\sum_{k=1}^2k^2+3k+4+\displaystyle\sum_{k=3}^4k^2+3k+4
\(\eqalign{
\displaystyle\sum_{k=1}^2k^2+3k+4+\displaystyle\sum_{k=3}^4k^2+3k+4&=\displaystyle\sum_{k=1}^5k^2+3k+4\\
&=\displaystyle\sum_{k=1}^5k^2+\displaystyle\sum_{k=1}^53k+\displaystyle\sum_{k=1}^54\\
&=\dfrac{5(5+1)(2(5)+1)}6+3\dfrac{5(5+1)}2+5\cdot4\\
&=\dfrac{5(6)(11)}6+3\cdot\dfrac{5(6)}2+20\\
&=55+45+20\\
&=\boxed{\boxed{120}}
}\)
No. 3
Notasi sigma yang equivalen dengan
\displaystyle\sum_{k=1}^{n}k^2+\displaystyle\sum_{k=4}^{n+3}(2k+1) adalah
- \displaystyle\sum_{k=1}^{n}\left(k^2+2k+1\right)
- \displaystyle\sum_{k=1}^{n}\left(k^2+2k+5\right)
- \displaystyle\sum_{k=1}^{n}\left(k^2+2k+7\right)
- \displaystyle\sum_{k=1}^{n}\left(k^2+2k+11\right)
\(\eqalign{
\displaystyle\sum_{k=1}^{n}k^2+\displaystyle\sum_{k=4}^{n+3}(2k+1)&=\displaystyle\sum_{k=1}^{n}k^2+\displaystyle\sum_{k=4-3}^{n+3-3}\left(2(k+3)+1\right)\\
&=\displaystyle\sum_{k=1}^{n}k^2+\displaystyle\sum_{k=1}^{n}\left(2k+6+1\right)\\
&=\displaystyle\sum_{k=1}^{n}k^2+\displaystyle\sum_{k=1}^{n}\left(2k+7\right)\\
&=\boxed{\boxed{\displaystyle\sum_{k=1}^{n}\left(k^2+2k+7\right)}}
}\)
0 Komentar
Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas