Exercise Zone : Notasi Sigma


Berikut ini adalah kumpulan soal mengenai notasi sigma tipe standar. Jika ingin bertanya soal, silahkan gabung ke grup Facebook atau Telegram.

Tipe:


No. 1

Diketahui {\displaystyle\sum_{n=1}^{50}(n+2)=}...
\(\begin{aligned} \displaystyle\sum_{n=1}^{50}(n+2)&=\displaystyle\sum_{n=1}^{50}n+\displaystyle\sum_{n=1}^{50}2\\ &=\dfrac{50(50+1)}2+2\cdot50\\ &=1275+100\\ &=1375 \end{aligned}\)

No. 2

Tentukan hasil dari \displaystyle\sum_{k=1}^2k^2+3k+4+\displaystyle\sum_{k=3}^4k^2+3k+4
\(\eqalign{ \displaystyle\sum_{k=1}^2k^2+3k+4+\displaystyle\sum_{k=3}^4k^2+3k+4&=\displaystyle\sum_{k=1}^5k^2+3k+4\\ &=\displaystyle\sum_{k=1}^5k^2+\displaystyle\sum_{k=1}^53k+\displaystyle\sum_{k=1}^54\\ &=\dfrac{5(5+1)(2(5)+1)}6+3\dfrac{5(5+1)}2+5\cdot4\\ &=\dfrac{5(6)(11)}6+3\cdot\dfrac{5(6)}2+20\\ &=55+45+20\\ &=\boxed{\boxed{120}} }\)

No. 3

Notasi sigma yang equivalen dengan \displaystyle\sum_{k=1}^{n}k^2+\displaystyle\sum_{k=4}^{n+3}(2k+1) adalah
  1. \displaystyle\sum_{k=1}^{n}\left(k^2+2k+1\right)
  2. \displaystyle\sum_{k=1}^{n}\left(k^2+2k+5\right)
  1. \displaystyle\sum_{k=1}^{n}\left(k^2+2k+7\right)
  2. \displaystyle\sum_{k=1}^{n}\left(k^2+2k+11\right)
\(\eqalign{ \displaystyle\sum_{k=1}^{n}k^2+\displaystyle\sum_{k=4}^{n+3}(2k+1)&=\displaystyle\sum_{k=1}^{n}k^2+\displaystyle\sum_{k=4-3}^{n+3-3}\left(2(k+3)+1\right)\\ &=\displaystyle\sum_{k=1}^{n}k^2+\displaystyle\sum_{k=1}^{n}\left(2k+6+1\right)\\ &=\displaystyle\sum_{k=1}^{n}k^2+\displaystyle\sum_{k=1}^{n}\left(2k+7\right)\\ &=\boxed{\boxed{\displaystyle\sum_{k=1}^{n}\left(k^2+2k+7\right)}} }\)

0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas