HOTS Zone : Bilangan Pecahan

Berikut ini adalah kumpulan soal mengenai Bilangan Pecahan. Jika ingin bertanya soal, silahkan gabung ke grup Telegram, Signal, Discord, atau WhatsApp.

Tipe:


No.

\sqrt2+\dfrac{\sqrt2}{\sqrt2+\dfrac{\sqrt2}{\sqrt2+\cdots}}= ....
misal x=\sqrt2+\dfrac{\sqrt2}{\sqrt2+\dfrac{\sqrt2}{\sqrt2+\cdots}}
\begin{aligned} x&=\sqrt2+\dfrac{\sqrt2}x\\ x^2&=\sqrt2x+\sqrt2\\ x^2-\sqrt2x-\sqrt2&=0\\ x&=\dfrac{\sqrt2+\sqrt{\left(-\sqrt2\right)^2-4(1)(\sqrt2)}}{2(1)}\\ &=\dfrac{\sqrt2+\sqrt{2+4\sqrt2}}2 \end{aligned}

No.

Jika {\dfrac{983}{466}=a+\dfrac1{b+\dfrac1{c+\dfrac1{d+\dfrac1{e+1}}}}}, dimana a, b, c, d, dan e adalah bilangan bulat positif, maka nilai dari {a\cdot b\cdot c\cdot d\cdot e} adalah
  1. 189
  2. 126
  3. 252
  1. 233
  2. 378
\begin{aligned} \dfrac{983}{466}&=2+\dfrac{51}{466}\\[8pt] &=2+\dfrac1{\dfrac{466}{51}}\\[18pt] &=2+\dfrac1{9+\dfrac7{51}}\\[18pt] &=2+\dfrac1{9+\dfrac1{\dfrac{51}7}}\\[33pt] &=2+\dfrac1{9+\dfrac1{7+\dfrac27}}\\[33pt] &=2+\dfrac1{9+\dfrac1{7+\dfrac1{\dfrac72}}}\\[45pt] &=2+\dfrac1{9+\dfrac1{7+\dfrac1{3+\dfrac12}}}\\[45pt] &=\boxed{2}+\dfrac1{\boxed{9}+\dfrac1{\boxed{7}+\dfrac1{\boxed{3}+\dfrac1{\boxed{1}+1}}}} \end{aligned}

2\cdot9\cdot7\cdot3\cdot1=\boxed{\boxed{378}}

No.

Nilai dari {\dfrac{2022^2\times\left(2021^2-2020\right)}{\left(2021^2-1\right)\times\left(2021^3+1\right)}\times\dfrac{2020^3\times\left(2021^2+2022\right)}{2021^3-1}} adalah ....
  1. 1
  2. 2020
  3. 2021
  1. 2022
  2. 2023
\begin{aligned} \dfrac{2022^2\times\left(2021^2-2020\right)}{\left(2021^2-1\right)\times\left(2021^3+1\right)}\times\dfrac{2020^3\times\left(2021^2+2022\right)}{2021^3-1}&=\dfrac{2022^2\times\left(2021^2-2020\right)}{\left(2021+1\right)\times\left(2021-1\right)\times\left(2021+1\right)\times\left(2021^2-2021+1\right)}\times\dfrac{2020^3\times\left(2021^2+2022\right)}{(2021-1)\times\left(2021^2+2021+1\right)}\\ &=\dfrac{2022^2\times\left(2021^2-2020\right)}{\left(2022\right)\times\left(2020\right)\times\left(2022\right)\times\left(2021^2-2020\right)}\times\dfrac{2020^3\times\left(2021^2+2022\right)}{(2020)\times\left(2021^2+2022\right)}\\ &=\boxed{\boxed{2020}} \end{aligned}


0 Komentar

Silahkan berkomentar dengan santun di sini. Anda juga boleh bertanya soal matematika atau mengoreksi jawaban di atas